Study of the ηN scattering amplitude through the associated photoproduction of Φ - and η -mesons

Matthias F.M. $Lutz^{(a)}$, Madeleine Soyeur^(b)

^(a) GSI, Planckstrasse 1, D-64291 Darmstadt, Germany ^(b) DAPNIA/SPhN, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France

The $\gamma p \rightarrow \Phi \eta p$ reaction is studied in the kinematic region where the ηp final state originates dominantly from the decay of the N * (1535) resonance. The threshold laboratory photon energy for this reaction (at the peak of the S11 resonance) is $E_{\gamma}^{Lab} = 3 \ GeV$. We will discuss it somewhat above threshold, at $E_{\gamma}^{Lab} \simeq 4 - GeV$, in order to reach lower (absolute) values of the squared 4-momentum transfer from the initial photon to the final Φ -meson. In these conditions, we expect the t-channel π^0 - and η -meson exchanges to drive the dynamics underlying the $\gamma p \to \Phi \eta p$ process. The initial photon dissociates into the final Φ -meson and a virtual pseudoscalar meson (π^0 or η). The virtual pseudoscalar meson scatters from the proton target to produce the final ηp state. The $\pi^0 p \to \eta p$ and $\eta p \to \eta p$ amplitudes are derived in the framework of a coupled-channel effective field theory of meson-baryon scattering. We found the η -meson exchange to be largely dominant. The $\eta - \pi^0$ interference is of the order of 20-30%. The sign of this term is not known and has a significant influence on the results. The $\pi N \to \eta N$ amplitude being largely determined by data on the $\pi^- p \to \eta n$ reaction, we found that the $\gamma p \to \Phi \eta p$ reaction cross section is rather directly related to the η -nucleon scattering amplitude in the N * (1535) resonance region. Accurate data on the $\gamma p \to \Phi \eta p$ process would therefore put additional constraints on this still poorly known amplitude.

- [1] M.F.M. Lutz, M. Soyeur, nucl-th/0511055.
- [2] M.F.M. Lutz, Gy. Wolf, B. Friman, Nucl. Phys. A 706 (2002) 431; ERRATUM-ibid A 765 (2006) 495.

E-mail: msoyeur@cea.fr