

B Decays Involving Light Mesons

Ivo Gough Eschrich

Introduction

VV ρκ* ωx

Other *KKK* $a_1 \rho, \phi \pi$

Summary

B Decays Involving Light Mesons

Ivo Gough Eschrich

University of California, Irvine for the BABAR Collaboration

9th International Workshop on Meson Production, Properties and Interaction Krakow, Poland, 9 - 13 June 2006

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

B Decays to Light Mesons

B Decays Involving Light Mesons

Ivo Gough Eschrich

Introduction

VV ρκ* ωΧ

Other *ккк* а, р, фт

Summary

- This talk's focus: new BABAR results for charmless B decay branching fractions
 - BABAR charm news: see Mark Pelizaeus' talk today at 12:00
 - BABAR CP studies covered in Maurizio Biasini's talk on Friday

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline:

- 1 Brief introduction to BABAR charmless analyses
- **2** B decays to final states containing η'
- 3 B decays to two vector mesons
- 4 Other recent results (if time allows)
- 5 Summary and outlook

Why measure charmless *B* decays?

B Decays Involving Light Mesons

Ivo Gough Eschrich

Introductio

VV ρK* ωX

Other KKK $a_1 \rho, \phi \pi$

Summary

- Measure CKM angles $\alpha(=\phi_2)$ and $\gamma(=\phi_3)$
- Search for direct CP violation (charge asymmetry)
- Study penguin vs. tree dominance
- Final state interactions?
- Lots of ongoing activity among theorists
 - See parallel session, talks by L. Lesniak and M. Sowa

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Charmless B Decays, 2006

Ivo Gough Eschrich

Introduction

VV ρK* ωX

Other *κκκ* a₁ρ,φπ

Summary

9 a C

The BABAR Detector

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

BABAR Performance

06/12/2006 02:21

9QC

Charmless analysis at BABAR

Involving Light Mesons

Ivo Gough Eschrich

Introductio

VV ρκ* ωx

Other *κκκ* a₁ρ,φπ

Summary

Event selection:

- Quality cuts for tracks and showers
- Continuum rejection using event shape variables
- B-background estimated by modeling
- Kinematic signal identification

•
$$m_{\rm ES} = \sqrt{E_{\rm beam}^{*2} - p_B^{*2}}$$

• $\Delta E = E_B^* - E_{\rm beam}^*$

 Yields, asymmetries determined by maximum likelihood fit over m_{ES}, ΔE, etc.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

 $\sigma(m_{\rm ES}) = 2.7 \,{
m MeV}$ $\sigma(\Delta E) = 10..50 \,{
m MeV}$

 $B \rightarrow \eta' X$

B Decays Involving Light Mesons

Ivo Gough Eschrich

Introduction

VV ρκ* ωχ

Other *κκκ* a₁ ρ, φπ

Summary

Common elements of all η' analyses presented:

• η' (958) reconstructed as

$$\eta' \to \eta \pi^+ \pi^- (\eta \to \gamma \gamma)$$
$$\eta' \to \rho^0 \gamma (\rho^0 \to \pi^+ \pi^-)$$

• η' candidate mass constrained to PDG value

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Photon cuts:
 - γ from π^0 : $E_{\gamma} > 30$ MeV
 - γ from η : $E_{\gamma} > 100 \text{ MeV}$
 - γ from η' : $E_{\gamma} > 200 \text{ MeV}$

 $B \rightarrow \eta^{(\prime)} K^{(*)}$

Introductio

VV ρK^{*} ωX

Other *κκκ* a₁ρ,φπ

Summary

 Penguin diagrams dominant (tree cannot produce ss̄)
 Interference between penguin diagrams combines with η - η' mixing angle:

 $\begin{tabular}{|c|c|c|c|c|}\hline η & η' \\ \hline K & suppressed & enhanced \\ \hline K^* & enhanced & suppressed \\ \hline \end{tabular}$ [Lipkin, PLB 254:247(1991)]

◆□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 $B \rightarrow \eta' K^*$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 「臣」のへ(?)

$B \rightarrow \eta' \rho$ and $\eta' f_0$

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

э

(232 million BB decays)

 $\eta'
ho, t_0$

$m{B} ightarrow \eta^{(\prime)} m{K}^{(*)} / ho / f_0$ Summary

Decay mode	Theoretical predictions SU(3) [1] QCDF [2]		Experimental results HFAG <u>New BaBar results</u>		
$B^0 o \eta' K^{*0}$	$3.0^{+1.2}_{-0.3}$	$3.9^{+9.2}_{-5.1}$	< 7.6	$3.8\pm1.1\pm0.5$	
$B^+ o \eta' K^{*+}$	$2.8^{+1.2}_{-0.3}$	$5.1^{+10.3}_{-5.9}$	< 14	$4.9^{+1.9}_{-1.7}\pm0.8$	< 7.9
$B^0 o \eta' ho^0$	$0.07\substack{+0.10 \\ -0.05}$	$0.01\substack{+0.12 \\ -0.06}$	< 4.3	$(0.4^{+1.2+1.6}_{-0.9-0.6})$	< 3.7
$B^+ o \eta' ho^+$	$4.9^{+0.7}_{-0.7}$	$6.3^{+4.0}_{-3.3}$	< 22	$(6.8^{+3.2}_{-2.9}{}^{+3.9}_{-1.2})$	< 14
$B^0 o \eta' f_0$	-		-	$(0.1^{+0.6}_{-0.4}{}^{+0.9}_{-0.4})$	< 1.5

[1] Chiang, Gronau, et al., Phys. Rev. D 69: 034001 (2004)

[2] Beneke and Neubert, Nucl. Phys. B 675: 333 (2003)

${m B} o \eta^{(\prime)} {m K}^{(*)}$ branching fractions in comparison

(suppressed/enhanced)					
	η	η'		η	η'
K±	2.5 ± 0.3	69.4 ± 2.7	κ^{0}	< 1.9	63.2 ± 3.3
K *±	24.3 ± 3.0	< 7.9	κ^{*0}	18.7 ± 1.7	$\textbf{3.8} \pm \textbf{1.2}$

Other recent $B \rightarrow \eta' X$ results

New upper limits for $B \rightarrow \eta^{(\prime)} \pi$ modes

[hep-ex/0603013]

Ivo Gough Eschrich

Introductior

VV ρK* ωX

Other KKK $a_1 \rho, \phi \pi$

Summary

 $egin{array}{lll} {\cal B}(B^0 o \eta'\eta) &< 1.7 imes 10^{-6} \ {\cal B}(B^0 o \eta\pi^0) &< 1.3 imes 10^{-6} \ {\cal B}(B^0 o \eta'\pi^0) &< 2.1 imes 10^{-6} \ {
m (232 \ million \ Bar B \ decays; 90\% \ UL)} \end{array}$

3-body decays with two η'

[hep-ex/0605008]

 $\begin{array}{ll} \mathcal{B}(B^0 \rightarrow \eta' \eta' \mathcal{K}^0) & < 31 \times 10^{-6} \\ \mathcal{B}(B^+ \rightarrow \eta' \eta' \mathcal{K}^0) & < 25 \times 10^{-6} \end{array}$

(228 million BB decays; 90% UL)

$B \rightarrow \eta' X$ Summary

 $B \rightarrow VV$ Decays

B Decays Involving Light Mesons

Ivo Gough Eschrich

Introductior

VV ρK^{*} ωX

Other *κκκ* a₁ρ,φπ

ummary

- Provide a wider set of observables than $B \rightarrow PP$ and $B \rightarrow PV$ modes
- *CP* asymmetries constructed from polarization components complement direct *A_{CP}*
- Pure penguin decays particularly sensitive to new physics

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- SM prediction for longitudinal polarization fraction $f_L \sim 1$
- Both for tree- and penguin dominated decays
- \blacksquare However, $f_L \sim 0.5$ for $B^0
 ightarrow \Phi K^{*0}$ [B4B4R, BELLE]

$B \rightarrow VV$ Decays

B Decays Involving Light Mesons

Ivo Gough Eschrich

Introduction

VV ρK^{*} ωX

Other KKK $a_1 \rho, \phi \pi$

Summary

Define helicity angles θ_1 , θ_2

- Direction between vector meson and its decay products in its rest frame
- Angle ϕ between decay planes

Longitudinal polarization fraction fL

$$\frac{1}{\Gamma}\frac{d^2\Gamma}{d\cos\theta_1d\cos\theta_2}\sim\frac{1}{4}(1-f_L)\sin^2\theta_1\sin^2\theta_2+f_L\cos^2\theta_1\cos^2\theta_2$$

$B^+ ightarrow ho^0 K^{*+}$ and $B^+ ightarrow K^{*0} ho^+$

Summary

・ロト・西ト・西ト・西・ うくぐ

 $B^+
ightarrow
ho^0 K^{*+}$ and $B^+
ightarrow K^{*0}
ho^+$

Introductio

VV ρK*

Other $\kappa\kappa\kappa$ $a_1\rho, \phi\pi$

Summary

Branching fractions $[\times 10^{-6}]$

$B^+ o K^{*0} ho^+$	$10.0\pm1.7\pm2.4$	
$B^+ o ho^0 K^{*+}$	$3.6\pm1.7\pm0.8$	(< 5.9; 90% UL)
$B^+ ightarrow {\it f}_0(980) K^{*+}$	$5.2\pm1.2\pm0.6$	

BELLE: $\mathcal{B}(B^+ \to K^{*0}\rho^+) = 8.9 \pm 1.7 \pm 1.2 \times 10^{-6}$ (275 × 10⁶ $B\bar{B}$ decays [PRL 95, 141801 (2005)])

 $B^+
ightarrow
ho^0 K^{*+}$ and $B^+
ightarrow K^{*0}
ho^+$

ρK*

f_L and \mathcal{A}_{CP}

 B^+

 B^+ B^+

BELLE: $f_L(B^+ \rightarrow K^{*0}\rho^+) = 0.43 \pm 0.11^{+0.05}_{-0.02}$

4

$B \rightarrow \omega K^*$ and $\omega \rho$

Ivo Gough Eschrich

Introduction

бу Other *ккк*

Summary

Previous experimental evidence only from CLEO

- **B** $\rightarrow \omega K^*$ penguin dominated
- \blacksquare Tree contribution expected to be stronger in ${\it B} \rightarrow \omega \rho$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 $B \rightarrow \omega K^*$ and $\omega \rho$

Introduction

ρκ* ω**χ**

Other κκκ a₁ρ,φπ

Summary

▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ � �

 $B \rightarrow \omega K^*$ and $\omega \rho$

Introduction

νν _{ρκ*} ωχ

Other ККК $a_1 \rho, \phi \pi$

Summary

Branching fractions $[\times 10^{-6}]$		
	[hep-ex/0605017]	
$B^0 ightarrow \omega K^{st 0}$	< 4.2	
$B^+ ightarrow \omega K^{*+}$	< 3.4	
$B^0 ightarrow \omega ho^0$	< 1.5	
$B^+ ightarrow \omega ho^+$	$10.6 \pm 2.1^{+1.6}_{-1.0}$	
$B^0 \rightarrow \omega \omega$	< 4.0	

$$B^0 o \omega \omega \phi$$
 < 1.2
 $B^0 o \omega \phi$ < 1.2
 $B^0 o \omega f_0$ < 1.5

▲ロト▲聞ト▲臣ト▲臣ト 臣 のへ⊙

$B \rightarrow \omega \rho$ Polarization

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

(232 million $B\overline{B}$ decays)

$B \rightarrow VV$ Summary

$B \rightarrow KKK$ Dalitz Plot Analysis

Results

[hep-ex/0605003]

mmary

 $\mathcal{B}(B^{\pm} \to K^{\pm}K^{\mp}K^{\pm}) = (35.2 \pm 0.9 \pm 1.6) \times 10^{-6}$ $\mathcal{A}_{CP} = (-1.7 \pm 2.6 \pm 1.5)\%$

(226 million $B\overline{B}$ events) BELLE: (30.6 ± 1.2 ± 1.6) × 10⁻⁶ (152 × 10⁶ $B\overline{B}$) [PRD 71:092003(2005)]

Other recent results

Conclusions

B Decays Involving Light Mesons

Ivo Gough Eschrich

Introduction

VV ρK* ωX

Other $\kappa\kappa\kappa$ $a_1\rho, \phi\pi$

Summary

Many new charmless results since MESON2004 (too many to cover). Selection of most recent results:

- Significant progress on $B \rightarrow \eta' K^* / \rho / f_0$ branching fractions
- Many improved measurements in the $B \rightarrow VV$ sector
- $\blacksquare B \to KKK \text{ Dalitz analysis}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- BABAR now becoming sensitive to branching fractions at the 10⁻⁷ level
 - Expect better muon/K_L efficiency after 2006
 - Data sample anticipated to quadruple by 2008