

The near-threshold production of Φ mesons in pN collisions

Michael Hartmann for the ANKE collaboration (M.Hartmann@FZ-Juelich.de)

Outline

- Introduction
- ANKE setup
- Data and results: $pp \rightarrow pp\phi$ & $pn \rightarrow d\phi$

Summary and Outlook

Φ meson production in pN collisions and Φ/ω ratio

scarce $pp \rightarrow pp\phi$ data no $pn \rightarrow d\phi$ data

energy dependence of the total Φ cross section \Rightarrow $g_{\phi NN}$

isospin dependence

 m_{ϕ} = 1019 MeV (distance of two colliding nucleons < 0.2fm)

Φ **= <s**₅>

Okubo-Zweig-Iizuka (OZI) rule

At ANKE: (pp) ε = 18.5, 34.6, 75.9 MeV (pn) ε up to 80 MeV

OZI rule

SU(3):
$$|\omega\rangle_1 = \frac{1}{\sqrt{3}} \left(|u\overline{u}\rangle + |d\overline{d}\rangle + |s\overline{s}\rangle \right)$$

 $|\omega\rangle_8 = \frac{1}{\sqrt{6}} \left(|u\overline{u}\rangle + |d\overline{d}\rangle - 2|s\overline{s}\rangle \right)$

$$\phi \rangle = \cos \theta_V |\omega\rangle_8 - \sin \theta_V |\omega\rangle_1 \approx |s\overline{s}\rangle$$

$$\omega \rangle = \cos \theta_V |\omega\rangle_8 + \sin \theta_V |\omega\rangle_1 \approx \frac{1}{\sqrt{2}} \left(|u\overline{u}\rangle + |d\overline{d}\rangle \right)$$

$$\left(\frac{\sigma_{\phi}}{\sigma_{\omega}}\right)_{SU(3)} = \tan^2 \Delta \theta_V = 4.2 \cdot 10^{-3}$$

H.J. Lipkin, Phys. Lett. B 60 (1976) 371.

OZI ratio in πN interaction

$$\frac{\left|M_{\pi N \to \omega N}\right|}{\left|M_{\pi N \to \phi N}\right|} = 8.7 \pm 1.8$$

$$R_{\phi/\omega} = (3.2 \pm 0.8) \times R_{OZI}$$

can be understood in terms of the established OZI violation in the $\phi\rho\pi$ and $\omega\rho\pi$ coupling.

A. Sibirtsev et al., Eur. Phys. J. A 7 (2000) 407.

ANKE spectrometer at COSY

ANKE spectrometer

M. Hartmann

Meson06

Particle identification

ANKE: $pp \rightarrow pp\Phi$ (total cross sections)

ANKE: $pp \rightarrow pp \Phi$ (differential cross sections)

ε**= 18.5 MeV**

close to threshold the angular decay distribution must display a $sin^2 \Theta_{\varphi}{}^{K^{+}}$

 Φ in relative S-wave

transition from ${}^{3}P_{1}$ (pp)-entrance channel to ${}^{1}S_{0}$ (pp) final-state

clear effect of pp-FSI

M. Hartmann et al. (ANKE), Phys. Rev. Lett. (in print).

The Φ/ω production ratio

OZI: $R_{\phi/\omega}$ (high energy) $\approx (1 - 2.4) \times R_{OZI}$ (in agreement with πN data and the $\phi \rho \pi$ and $\omega \rho \pi$ coupling)

OZI: $R_{\phi/\omega}$ (18.5-79.5 MeV, ANKE) \approx (3.3±0.6)×10⁻² \approx 8× R_{OZI}

 \geq 100 MeV, at the JINR Nuclotron, NIS detector

ANKE: $pp \rightarrow pp \Phi$ compared with theoretical predictions

K. Tsushima and K. Nakayama, Phys. Rev. C 68 (2003) 034612.

L.P. Kaptari and B. Kaempfer, Eur. Phys. J. A 23 (2005) 291.

A. Faessler *et al.*, Phys. Rev. C 68 (2003) 068201. (resonance model, two-step)

DISTO: $pp \rightarrow pp \Phi$ (differential cross sections)

 $\epsilon = 83 \text{ MeV}$

dominantly S-wave, best fit: (28 ± 7) % P-wave constribution

DISTO, ANKE: $pp \rightarrow pp\Phi$ (pp-FSI)

higher partial (P-) wave contribution at $\epsilon \approx 80$ MeV as 30%, or production mechanism

Forschungszentrum Jülich

Speculation: exotic baryon B_{φ}

Few years ago Landsberg proposed that ϕp production, <u>which is OZI suppressed</u> for non-resonant reactions, is well suited for the search of cryptoexotic baryons with hidden strangeness, $B\phi = uddss (\rightarrow \phi N, K\overline{K} \text{ or YK})$.

L.G. Landsberg, Phys. Usp. 37 (1994) 1034. L.G. Landsberg, Phys. Rep. 320 (1999) 223.

experimental limits for the $B\phi$ candidates:

M.W. Arenton *et al.*, Phys. Rev. D. 25 (1984) 2241.
A.N. Aleev *et al.*, Z. Phys. C25 (1984) 205.
V.A. Dorofeev *et al.*, Phys. At. Nucl. 57 (1994) 227.
V.A. Dorofeev *et al.*, Phys. At. Nucl. 57 (1994) 238.
M.Ya. Balatz *et al.*, Z. Phys. C 61 (1994) 223.
D.V. Valvilov *et al.*, Phys. At. Nucl. 63 (2000) 1391.
Yu.M. Antipov *et al.*, Phys. At. Nucl. 65 (2002) 2070.

$$\Sigma^{0}(1385)$$
K⁺ $\Leftrightarrow \Phi p$

Energy dependence of ϕ production

$$\sigma(\epsilon) = \frac{\sqrt{m_N^2 m_\omega}}{2^7 \pi^2 (2m_N + m_\omega)^{3/2}} \frac{\epsilon^2}{\sqrt{s^2 - 4sm_N^2}} \\ \times \left[1 + \frac{4\beta^2 - 4\alpha^2}{\left(-\alpha + \sqrt{\alpha^2 + m_N \epsilon}\right)^2} \right] |\mathcal{M}|^2,$$

phase space + pp-FSI (means of Jost function)

A. Sibirtsev et al., Eur. Phys. J. A, (2006, in print).

ANKE: New pp Φ data with high statistics at $\mathcal{E}=76$ MeV

E=75.9 MeV

analysis not finished yet!

ANKE: $pn \rightarrow d\Phi$ (event selection)


```
T_{p} = 2.65 \, GeV
```

```
pd \rightarrow d\Phi(K^+K^-)p_{spectator}
pn \rightarrow d\Phi(K^+K^-)
```

Monte Carlo simulation: Fermi momentum in the target deuteron derived from Bonn potential.

 $\sigma_{\epsilon} \approx 2 \text{ MeV}$ extract cross section < 80 MeV

June 10-th, 2006

ANKE: $pn \rightarrow d\Phi$ (differential cross sections)

1 S + 9 possible P-wave amplitudes !

				Ll_{J_q}
$^{1}P_{1}$	\rightarrow	${}^{3}S_{1}$	s	Ss
${}^{3}S_{1}$	\rightarrow	${}^{3}S_{1}$	p	S^1p_0
${}^{3}S_{1}$	\rightarrow	${}^{3}S_{1}$	p	S^1p_1
${}^{3}S_{1}$	\rightarrow	${}^{3}S_{1}$	p	S^1p_2
${}^{3}D_{1}$	\rightarrow	${}^{3}S_{1}$	p	$S^2 p_0$
${}^{3}D_{1}$	\rightarrow	${}^{3}S_{1}$	p	S^2p_1
${}^{3}D_{1}$	\rightarrow	${}^{3}S_{1}$	p	$S^2 p_2$
		• • •		

to allow for the possibility of higher partial waves ... most general form:

$$d\sigma/d\Omega_{\Phi}^{K^{+}}=3(a\sin^{2}\Theta_{\Phi}^{K^{+}}+2b\cos^{2}\Theta_{\Phi}^{K^{+}})/8a$$

 $\sigma_{tot} = a + b$

from fits to these data: $b/a \approx (0.012 \pm 0.001)(\epsilon/MeV)$

ANKE: $pn \rightarrow d\Phi$ (differential and total cross sections)

using final-state-interaction theory (G. Faeldt and C. Wilkin, Phys. Lett. B. 382 (1996) 209). $\sigma(pn \rightarrow pn\Phi) / \sigma(pp \rightarrow pp\Phi) \approx 2.3\pm0.4$

Summary and outlook

pp→pp φ (ε=18.5,	34.5 and 75.9 MeV)			
ε= 18.5 MeV ,	S-wave production			
	$({}^{3}P_{1} \rightarrow {}^{1}S_{0}$ transition)			
clear pp-FSI	(energy dependence)			
OZI: $R_{\phi/\omega}(18.5-79.5 \text{ MeV})$				
~ (3.5±0	7.0J×10 - ~ 0×K021			

S. Barsov et al. (ANKE), Eur. Phys. J. A 21 (2004) 521.

new pp \rightarrow pp ϕ data at ϵ =75.9 MeV

(≈ 3000 Φ's)

higher partial wave contribution ??