η and η' mesons production at COSY-11

Paweł Moskal on behalf of the COSY-11 collaboration

Jagellonian University, Cracow, Poland Research Centre Jülich, Germany

MESON 2006, Ninth International Workshop on Meson Production, Properties and Interactions Cracow, 9 – 13 June 2006

COSY-11 COLLABORATION

D. Grzonka, M. Janusz , K. Kilian, P. Klaja , W.Oelert, J. Przerwa , J. Ritman, T. Sefzick, P. Winter, M. Wolke, P. Wüstner IKP & ZEL, Research Centre Jülich, Germany

E. Czerwiński , R. Czyżykiewicz , D. Gil , I. Drągowska , L. Jarczyk, B. Kamys, P. Moskal, C. Piskor-Ignatowicz , J. Smyrski IP, Jagellonian University, Cracow, Poland

H.-H. Adam *L*, A. Khoukaz, A. Täschner *L* IKP, Westfälische Wilhems-Universität Münster, Germany

T. Rożek, M. Siemaszko, W. Zipper I P, University of Silesia, Katowice, Poland

> A. Budzanowski INP, Cracow, Poland

From Quarks to Hadrons

Asymptotically the photon couples to quarks, yet confinement ensures that only hadronic final states are observed.

- Why are quarks confined within hadrons?
- How are hadrons constructed from their constituents?
- What is the relation of parton degrees of freedom and the low energy structure of hadrons?
- Do glueballs (ggg) and hybrids (qqg) exist?
- What is the origin of hadron masses ?
- How are hadrons modified when embedded in nuclei?
- What is the role of chiral symmetry ?

What are we trying to learn?

Production mechanism of the η and η' mesons in NN collisions ?
 Isovector meson (π, ρ, ...) exchange ...
 Gluonic excitation...

Role of hadronic and quark-gluons degrees of freedom

- ♣ Nucleon-η' hadronic interaction ?
- \clubsuit What is the structure of the η and η' mesons ?
- Do the η -mesic nuclei exist ?

hadronic interaction \equiv caused by the strong interaction between quarks and gluons; constituents of hadrons

mesons
$$\eta$$
 and $\eta' \equiv$ flavour neutral quark-antiquark objects
 $\eta \sim u\overline{u} + d\overline{d} - 2s\overline{s}$
 $\eta' \sim u\overline{u} + d\overline{d} + s\overline{s} + gluons$

Due to the short life-time these mesons cannot move on the avarge more than few tens of femtometers.

proton - proton

proton - deuteron deuteron – deuteron proton - neutron

after reaction:

COoler SYnchrotron COSY

- polarised and unpolarised proton and deuteron beams
- stochastic and electron cooling
- momentum range: 600 3700 MeV/c
- meson production up to $\phi(1020)$

$$\sigma = \frac{1}{F} \int dV_{\rm ps} |\mathbf{M}|^2$$

 $|M|^2 \, \sim |M_0|^2 \, |M_{FSI}|^2$

 $|M_{FSI}|^2 \sim |M_{pp}|^2 \, |M_{p1\eta}|^2 \, \, |M_{p2\eta}|^2$

dynamics $\rightarrow |M_0|^2$

interaction $\rightarrow \sigma(Q)$

COSY-11: A. Khoukaz et al., Eur. Phys. J. A 20 (2004) 345.
COSY-11: P. M. et al., Phys. Rev. C 69 (2004) 025203.
COSY-11: P. M. et al., Phys. Lett. B 482 (2000) 356.
COSY-11: P. M. et al., Phys. Lett. B 474 (2000) 416.
COSY-11: J. Smyrski et al., Phys. Lett. B 474 (2000) 182.
COSY-11: P. M. et al., Phys. Rev. Lett. 80 (1998) 3202.
WASA/CELSIUS: H. Calen et al., Phys. Lett. B 366 (1996) 39.
WASA/CELSIUS: H. Calen et al., Phys. Rev. Lett. 79 (1997) 2642.
DISTO/SATURNE: F. Balestra et al., Phys. Lett. B 491 (2000) 29.

SPES/SATURNE: F. Hibou et al., Phys Lett. **B 438** (1998) 41. PINOT/SATURNE: E. Chiavassa et al., Phys. Lett. **B 322** (1994) 270. SPES/SATURNE: A. M. Bergdold et al., Phys. Rev. **D 48** (1993) R2969. SPES/SATURNE: R. Wurzinger et al., Phys. Lett. **B 374** (1996) 283.

W. Oelert : Thoughts to the kaon pair production in the threshold region Saturday, 15:00, session 1A

COSY-11: P. Winter et al., Phys. Lett. B 635 (2006) 23.
COSY-11: C. Quentmeier et al., Phys. Lett. B 515 (2001) 276.
DISTO: F. Balestra et al., Phys. Rev. C 63 (2001) 024004.

EXPERIMENT Q = 15.5 MeV

SIMULATION

SIMULATION

•COSY-11: P. M. et al., Phys. Rev. C 69 (2004) 025203.

DYNAMICS SPIN and ISOSPIN observables

Production of the η meson in the few nucleon system

e)

Near constant ratio about 6.5 over measured energy range Signals strong isovector exchange in production mechanism

Integrated Luminosity = $2 \cdot 10^{35} \text{ cm}^{-2}$

•COSY-11: P. M. et al., J. Phys. G 32 (2006) 629.

$p n \rightarrow p n \eta'$

Integrated Lumonosity from runs in $2004/2006 \approx 100 \cdot 10^{35} \text{ cm}^{-2}$ Analysis in progress

Isospin dependence of the η' meson production in the nucleon-nucleon collision

Preliminary results from run in 2005

 $dp \rightarrow {}^{3}\text{He} X$

CUSP KILLER !!!!

SATURNE $pd \rightarrow {}^{3}\text{He} X$

threshold excitation curve

Production amplitude pd \rightarrow ³He η

Search for the ⁴He- η bund state via measurement of the excitation function of the $d \rightarrow {}^{3}\text{He} p \pi^{-}$ reaction

- $p \pi$ back-to-back emission: $\theta_{cm} \sim 180^{\circ}$
- ³He is a spectator : $p_{cm} \sim 50 \text{ MeV/c}$,

 $\theta_{lab} \sim 50 / 1500 \text{ rad} = 1.9^{\circ}$

Detection system

Eta bound-states in nuclei

	m (MeV)	z	m^* (MeV)	Rea~(fm)
η_8	547.75	3.31	500.0	0.43
η (-10°)	547.75	3.15	474.7	0.64
η (-20°)	547.75	3.00	449.3	0.85
η_0	958	1.46	878.6	0.99
η' (-10°)	958	1.62	899.2	0.74
η' (-20°)	958	1.76	921.3	0.47

SD Bass, AW Thomas, hep-ph/0507024

- Sigma mean field couples to light quarks and not to strange quarks
 - \rightarrow Flavour-singlet component is important !

The bigger the eta-eta'mixing angle, the bigger the singlet component in the eta

- \rightarrow greater the attraction
- \rightarrow more binding
- → bigger eta-N scattering length

Triangle diagram (impulse approximation)

Cezary Piskor-Ignatowicz: Near threshold η meson production in deutron - proton collisions Saturday, 17:30, session 1A

•