

9th International Workshop on Meson Production, Properties and Interaction

Charm and Charmonium Spectroscopy

M. Pelizäus (Ruhr-Universität Bochum) for the Babar Collaboration

June 13, 2006 Cracow, Poland

The Babar-Experiment

- Asymmetric energy e⁺e⁻ storage rings PEP-II
 - ~90% at 10.58 GeV (↑(4S)); ~10% at 10.54 GeV
 - more than 350 fb⁻¹ recorded so far
 - (~1.6x10⁹ hadronic events)

- Good track and vertex reconstruction
- Good particle identification
- Good photon detection

Production of hidden and open charm states

- Production in B decays
 - ~380x10⁶ BB events
 - provides access to inclusive measurements of absolute branching fractions
- $e^+e^- \rightarrow c\overline{c}$ fragmentation processes
 - ~1x10⁹ charmed particles
 - spectroscopy of open charm states with high precision
- Initial state radiation (ISR) $e^+e^- \rightarrow \gamma_{ISR}(c\overline{c})$
 - J/ ψ sample: ~14x10⁶ events
 - resonance production in the
 energy range $\sqrt{s} < 10.58 \ GeV$
 - only production of J^{PC}=1⁻⁻ states

Babar offers excellent options for charm / charmonium spectroscopy

Ē

Spectrum of cs mesons

- Picture on cs mesons still incomplete
 - established are D_s , D_s^* , D_{s1} , D_{s2}
- Candidates for lowest, missing J^P=0⁺,1⁺ states (discovered in 2003)

 $D_{sJ}^{*}(2317) ~(\rightarrow D_{s}\pi^{0})$

m=2317.4 \pm 0.9 MeV, Γ <4.6 MeV (PDG) J^P consistent with 0⁺

 $D_{sJ}(2460) (\rightarrow D_{s}^{*}\pi^{0}, D_{s}\gamma, D_{s}\pi^{+}\pi^{-})$

m=2459.3 \pm 1.3 MeV, Γ <5.5 MeV (PDG) J^P consistent with 1⁺

- cc assignment in conflict with expectations: Masses lower than predicted, widths very small
- Numerous theoretical explanations for discrepancy
 possibly exotic states (molecules, tetra-quarks,...)

• Put further experimental constraints on the two states

- Comprehensive, exclusive study for e⁺e⁻→cc̄ fragmentation processes
 - investigation of $D_s\pi^0$, $D_s\gamma$, $D_s\pi^0\gamma$, $D_s\pi^0\pi^0$, $D_s\gamma\gamma$, $D_s\pi^+\pi^-$ final states
 - measurement of branching ratios, masses and widths
 - search for doubly charged / neutral $D_{sJ}^{*}(2317)$ partners in $D_{s}\pi^{\pm}$ system (predicted by some molecule models)
- Inclusive study of $B \rightarrow D^{(*)}D_{sJ}$ decays
 - measurement of absolute branching fractions

- Only observed $D_{sJ}^{*}(2317) \rightarrow D_{s}\pi^{0}$ m=(2319.6±0.2±1.4)MeV/c² Γ <3.8 MeV (95% CL)
- Upper limits on branching ratios for 5 other decay modes

Exclusive study of $D_{sJ}^{*}(2317)$

- No neutral or doubly charged partner states found (→isospin I=0)
 - production 60-80x suppressed wrt D_{sJ}*(2317) production rate (rules out some molecule models)

M. Pelizäus, Charm and Charmonium Spectroscopy

Exclusive study of $D_{sJ}(2460)$

• Measurement of two branching ratios

Babar: 232 fb ⁻¹ hep-ex/0604030 submitted to PRD

 $\frac{\mathcal{B}(D_{sJ}(2460)^+ \to D_s^+ \gamma)}{\mathcal{B}(D_{sJ}(2460)^+ \to D_s^+ \pi^0 \gamma)} = 0.34 \pm 0.04 \pm 0.04$ $\frac{\mathcal{B}(D_{sJ}(2460)^+ \to D_s^+ \pi^+ \pi^-)}{\mathcal{B}(D_{sJ}(2460)^+ \to D_s^+ \pi^0 \gamma)} = 0.077 \pm 0.013 \pm 0.008$

• Combined results from three decay modes

m=(2460.1±0.2±0.8)MeV/c² Γ<3.5 MeV (95% CL)

• Additional measurement for $D_{s1}(2536)^+$ from $D_s\pi^+\pi^-$ decay

m=(2534.6±0.3±0.7)MeV/c² Γ<2.5 MeV (95% CL) - Decay patterns of $D_{sJ}^*(2317)$ and $D_{sJ}(2460)$ are compatible with spin-parity assignment 0⁺ and 1⁺, respectively

	$D_{sJ}^{*}(2317)^{+}$		$D_{sJ}(2460)^+$	
Final state	if J	$P = 0^+$	if J	$^{P} = 1^{+}$
$D_s^+\pi^0$	↑	\bigtriangleup	↓	\bigtriangledown
$D_s^+\gamma$	\downarrow	\bigtriangledown	↑	\bigtriangleup
$D_s^+ \pi^0 \gamma$	↑		↑	
$D_s^*(2112)^+\pi^0$	\downarrow	\bigtriangledown	↑	\bigtriangleup
$D_{sJ}^{*}(2317)^{+}\gamma$	-	_	↑	\bigtriangledown
$D_s^+ \pi^0 \pi^0$	\downarrow	\bigtriangledown	↑	\bigtriangledown
$D_s^+ \gamma \gamma$	↑	\bigtriangledown	↑	\bigtriangledown
$D_s^*(2112)^+\gamma$	↑	\bigtriangledown	↑	\bigtriangledown
$D_s^+\pi^+\pi^-$	\downarrow	\bigtriangledown	↑	\triangle
↑ allowed, $↓$ forbidden				
\triangle observed. ∇ not observed				

- Fully reconstructed B_{reco} and D^{*} from other B_{signal}→D^(*)X, D_s^(*)X decay investigate recoil mass m_x for signal
- First measurement of absolute branching fractions (BF) for $\overline{B} \to D^{(*)+/0}D_{sJ}(2460)^-$ decays, e.g. $\mathcal{B}(\overline{B}^0 \to D^{*+}D_{sJ}(2460)^-)$ = $(0.88 \pm 0.20 \pm 0.14)\%$ ~ 120

submitted to PRD

- Combine with previously measured product BF and BRs / use $\mathcal{B}(D_s^+ \to \phi \pi^+) = (4.62 \pm 0.62)\%$
 - $\mathcal{B}(D_{sJ}(2460)^+ \to D_s^{*+}\pi^0) = (56 \pm 13 \pm 9)\%$ $\mathcal{B}(D_{sJ}(2460)^+ \to D_s^+\gamma) = (16 \pm 4 \pm 3)\%$ $\mathcal{B}(D_{sJ}(2460)^+ \to D_s^+\pi^+\pi^-) = (4 \pm 1)\%$

Sum of known BFs is: $(77\pm17)\%$

Inclusive study of $D_{s,l}(2460)$

Exclusive study of the DK system

Exlusive study of the DK system • in $e^+e^- \rightarrow c\overline{c}$ processes

> $e^+e^- \rightarrow (D^0K^+)X$ $\hookrightarrow K^-\pi^+, K^-\pi^+\pi^0$ $e^+e^- \rightarrow (D^+K^0_S)X$ $\hookrightarrow K^-\pi^+\pi^+$

- Good kaon / pion identification •
- Clean $K_S \rightarrow \pi^+ \pi^-$ and $\pi^0 \rightarrow \gamma \gamma$ selection •
- Kinematic fit to common vertex •
- CMS momentum p*(DK)>3.5 GeV •

Observation of a new resonance at 2.86 GeV $e^+e^- \rightarrow (D^0K^+)X_{\mu}$ Reflection: $D_{s1}(2536)^+ \rightarrow D^*K^+$ $\hookrightarrow D^0 \gamma, D^0 \pi^0$ $\hookrightarrow K^-\pi^+$ x10³ x10³ Entries / 20MeV/c² W $D_{s2}(2573)^+ \rightarrow D^0 K^+$ + BABAR D_{sJ}*(2860) broad structure ()at ~2.7 GeV new structure BABAR D_s,*(2860) preliminarv N=872±139¹ 2.7 m(D⁰K⁺) / GeV/c² 6.3σ MC does not reproduce D⁰ sidebands

m(D⁰K⁺) / GeV/c² 3.1 signal / reflection yields adequate due to poor knowledge of charm production in fragmentation processes

New structure at 2.86 GeV

2.3

- absent in D^0 sidebands and $e^+e^-{\rightarrow}c\overline{c}\ MC$ events
- no reflection from D^{*} decays
- not due to kaon/pion misidentification

Entries / 20 MeV/c²

Further studies of $D_{sJ}^{*}(2860)$

- New structure also apparent in $K^+D^0(\rightarrow K^-\pi^+\pi^0)$ and $K_SD^+(\rightarrow K^-\pi^+\pi^+)$ with consistent mean and width
- Fit to sum of all 3 data samples yields to

 $D_{sJ}^{*}(2860)^{+}$ m=2856.6±1.5±5.0 MeV/c² Γ =48±7±10 MeV $D_{s2}(2572)^+$ m=2572.2±0.3±1.0 MeV/c² Γ =27.1±0.6±5.6 MeV

Babar: 240 fb⁻¹

preliminary

broad structure at ~2.7 GeV needed to fit data (best parameterization: Gaussian) also indication for activity in that region at low p^{*} values for D⁰ \rightarrow K⁻ π ⁺ sidebands (reflection?)

if resonance: X(2690)⁺ (Breit Wigner parameterization) m=2688±4±2 MeV/c², Γ=112±7±36 MeV

• Decay to DK implies natural spin-parity

- is $D_{sJ}^*(2860)$ the missing $J^P=3^- c\bar{s}$ state?

• No indication for $D_{s,l}^*(2860) \rightarrow D^*K$ decays found

Charmonium candidates X(3872) and Y(4260)

- Below DD threshold
 - detailed information about J/ ψ , ψ' , χ_{cJ}
 - less knowledge on η_c, η', h_c
- Above DD threshold many predicted states still undetected
- Two candidates in this region are

X(3872) (\rightarrow J/ψπ⁺π⁻, J/ψγ, D⁰D⁰π⁰) m=3871.2±0.6 MeV, Γ<2.3 MeV (90%CL) $\stackrel{\scriptstyle g}{\succeq}$ J^{PC} possibly 1⁺⁺

Y(4260) (→J/ψπ⁺π⁻,J/ψπ⁰π⁰) m=4259⁺⁸₋₁₀ MeV, Γ=88⁺²⁴₋₂₃ MeV J^{PC}=1⁻⁻

- Both states do not fit well into conventional charmonium picture
 - possibly exotic matter (ccg hybrids, molecules, tetra quarks, ...)
 - detailed experimental survey necessary to distinguish

Other $c\bar{c}$ candidates above $D\bar{D}$ threshold are X(3940), Y(3940) and Z(3930) recently reported by Belle

Exotic interpretations of X(3872)

Maiani et al.

Braaten, Kusunoki

PRD71, 074005 (2005)

PRD71, 014028 (2005)

- Tetra quark model
 - predicts nonet with two neutral states
 X_u=[cu][c
 u
] and X_d=[cd][c
 d
]
 - X_u and X_d mix to two neutral states produced in B⁰ and B⁺ decays with same rate but mass difference of $\Delta(m)=(7\pm 2)$ MeV X^-
 - two charged partners X⁺=[cu][cd] and X⁻=[cd][cu] should exist

- S-wave DD^{*} molecule
 - motivated by proximity to $D^0\overline{D}^{0^*}$ threshold
 - 10x suppressed BR
 of B⁰→KX wrt B⁺→K⁺X decay

hep-ph/0601110 for detailed review

- $B = \begin{bmatrix} D^{0} & D^{0} & D^{0} & D^{0} \\ D^{0} & \bar{D}^{*0} & D^{*0} & \bar{D}^{*0} \\ \bar{D}^{*0} & B & \bar{D}^{0} & \bar{D}^{*0} \\ K & K & K \end{bmatrix}$
- Wide variety of other models
 proposed see e.g. Swanson
 bas ab/0001110

M. Pelizäus, Charm and Charmonium Spectroscopy

M. Pelizäus, Charm and Charmonium Spectroscopy

•

Exclusive study of X(3872)

- $B^+ \rightarrow K^+ X \rightarrow K^+ (J/\psi \gamma)$, decay to $J/\psi \gamma$ implies C=+1
 - $[\pi\pi]$ system in J/ $\psi\pi^+\pi^-$: I=1, most probably P-wave $[\pi\pi]$

→ X(3872): I=0, C=+1, J^P=1⁺ favoured

- $-~X{\rightarrow}J/\psi\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$ violates isospin conservation \rightarrow small width / radiative decay
- $\mathcal{B}(B^+ \to X(3872)K^+, X(3872) \to J/\psi\gamma)$ $= (3.4 \pm 1 \pm 0.3) \times 10^{-6}$ $\mathcal{B}(X(3872) \rightarrow J/\psi\gamma)$ Signal Events / (10 MeV/c²) $\overline{\mathcal{B}(X(3872) \rightarrow J/\psi \pi^+\pi^-)}$ X(3872) BABAR $= (34 \pm 14)\%$ preliminary N=19.2 ± 5.7 3.4σ Confirms observation of 4σ signal by Belle with consistent BF/BR -10 3.65 3.85 3.9 4.05 3.75 3.8 3.95 4.1 3.7 4 $m(J/\psi \gamma) (GeV/c^2)$

Babar: 287M BB Preliminary

B+

(4S)

e

 e^+

B

reco

X

 Two body decay: Measured K⁺ momentum in rest frame of recoil B defines m(X_{cc})

 $\mathcal{B}(B^+ \to K^+X(3872))$ < 3.2 × 10⁻⁴ (90%CL)

 $\mathcal{B}(X(3872) \to J/\psi \pi^+ \pi^-)$ > 4.2% (90%CL)

Discovery of Y(4260)

- Negative search result for X(3872) production in ISR events with γ_{ISR} detected, but discovered ...
- Y(4260) in $e^+e^- \rightarrow \gamma_{ISR}(\pi^+\pi^- J/\psi)$
 - $-\gamma_{ISR}$ need not to be detected
 - ISR implies J^{PC}=1⁻⁻
 - fit with one resonance hypothesis yields to:
 - $m = (4259 \pm 8^{+2}_{-6}) \text{MeV}/c^2$
 - $\Gamma = (88 \pm 23^{+6}_{-4}) \text{MeV}$

$$\Gamma_{ee}^{Y} \times \mathcal{B}(Y(4260) \to \pi^{+}\pi^{-}J/\psi) = (5.5 \pm 1^{+0.8}_{-0.7})eV$$

- isospin I=0

Confirmation

- **CLEO-c** scan: Enhanced cross sections for $e^+e^- \rightarrow \pi^+\pi^- J/\psi \ (\pi^0\pi^0 J/\psi)$ at $\sqrt{s}=4.26$ GeV
- **CLEO-III**: Observation in $e^+e^- \rightarrow \gamma_{ISR}(\pi^+\pi^-J/\psi)$ at $\sqrt{s}=10.58GeV$

Search for other Y(4260) decays in ISR processes

M. Pelizäus, Charm and Charmonium Spectroscopy

- X(3872) ($\rightarrow J/\psi\pi^+\pi^-$, $J/\psi\gamma$, $D^0\overline{D}{}^0\pi^0$)
 - m=3871.2±0.6 MeV/c², Γ<2.3 MeV (90% CL)
 - no charged partner states found \rightarrow isospin I=0
 - $\ J/\psi\gamma\,decay \ \rightarrow C{=}{+}1$
 - preferable $J^{P}=1^{+}$ (from $[\pi\pi]$ system in $J/\psi\pi^{+}\pi^{-}$ decay)
 - possibly $X_{c1}(2P)$ (but mass lower than expected)
 - exotic interpretations not excluded
 - further experimental information required
- Y(4260) $(\rightarrow J/\psi \pi^{+}\pi^{-}, J/\psi \pi^{0}\pi^{0})$
 - $m = (4259 \pm 8^{+2}_{-6}) \text{MeV}/c^2$, $\Gamma = (88 \pm 23^{+6}_{-4}) \text{MeV}$
 - no indication of $\phi \pi^+ \pi^-$, DD and pp decays
 - production in ISR events $\rightarrow J^{PC}=1^{--}$
 - isospin I=0
 - charmonium and exotic interpretations need further investigation

 Discovery of new states in recent years has pushed experimental / theoretical activity in charm / charmonium spectroscopy

- Comprehensive study of $D_{sJ}^{*}(2317)$ and $D_{sJ}(2460)$
 - precise measurement of mass, width and branching ratios
 - first measurement of absolute $D_{sJ}(2460)$ branching fractions
- Discovery of D_{sJ}*(2860) state decaying to DK (brand new)

- Charmonium candidates X(3872) and Y(4260)
 - studies on production processes and decay modes
 - further investigation required to understand the nature of these states

Backup Slides

Reconstruction

- Clean $D_s^+ \to K^+ K^- \pi^+$ sample •
 - well identified K[±] und π^{\pm} candidates
 - common vertex required
 - Momentum: $p_{CM}(D_s) > 2.2 \text{ GeV/c}$
 - >400.000 reconstructed $D_s \rightarrow \phi(K^+K^-)\pi^+$ and $D_{c} \rightarrow \overline{K}^{*}(K^{-}\pi^{+})K^{+}$ decays

- Combination of D_s candidates • with further γ, π^0, π^{\pm} of same event —
 - Momentum: $p_{CM}(D_{sJ})>3.2 \text{ GeV/c}$

Reflections in $D_s \pi^0$

Reflections in $D_s \pi^0 \gamma$

No indication for charged partner states of X(3872)

$$\mathcal{B}(B^- \to X^- K_S, X^- \to J/\psi \pi^0 \pi^-) < 22 \cdot 10^{-6} \quad (90\% CL)$$

$$\mathcal{B}(B^0 \to X^- K^+, X^- \to J/\psi \pi^0 \pi^-) < 5.4 \cdot 10^{-6} \quad (90\% CL)$$

Babar: 193 fb⁻¹

PRD 71, 031501 (2005)

 No evidence for D_{sJ}*(2860) decays to:

 $\begin{array}{c} \mathsf{D}^{*0}\;\mathsf{K}^{*},\;\mathsf{D}^{*0}\xrightarrow{}\mathsf{D}^{0}\;\pi^{0}\\ \mathsf{D}^{*0}\;\mathsf{K}^{*},\;\mathsf{D}^{*0}\xrightarrow{}\mathsf{D}^{0}\;\gamma\\ \mathsf{D}^{*+}\mathsf{K}^{0}{}_{\mathrm{S}},\;\mathsf{D}^{*+}\xrightarrow{}\mathsf{D}^{+}\pi^{0} \end{array}$

Confirmation of Y(4260) from CLEO-III / CLEO-c

Y(4260) production in B decays

Babar: 232M BB

PRD 73, 011101 (2006)

- Exclusive study of $B^+ \rightarrow K^+(J/\psi \pi^+\pi^-)$ decays
- Indication for production in B decays
 - Signal lineshape uses mass and intrinsic width obtained from signal observed in ISR production
 - Needs confirmation $\begin{array}{c}
 \mathcal{B}(B^+ \to YK^+, Y \to J/\psi\pi^+\pi^-) \\
 = (2.0 \pm 0.7 \pm 0.2) \times 10^{-5}
 \end{array}$ $\begin{array}{c}
 \mathcal{B}(B^+ \to YK^+, Y \to J/\psi\pi^+\pi^-) \\
 = (2.0 \pm 0.7 \pm 0.2) \times 10^{-5}
 \end{array}$ $\begin{array}{c}
 \mathcal{B}(B^+ \to YK^+, Y \to J/\psi\pi^+\pi^-) \\
 \mathcal{B}(D^+ \oplus D^+) \\
 \mathcal{B}(D^+ \oplus D^+$

• No indication for Y(4260) decay to $p\bar{p}$ in ISR processes

Babar: 232 fb⁻¹ PRD 73, 012005 (2006)

$$\frac{\mathcal{B}(Y(4260) \rightarrow p\overline{p})}{\mathcal{B}(Y(4260) \rightarrow J\psi\pi^+\pi^-)} < 0.13 \ (90\% \text{CL})$$