Dynamical coupled-channel approach to the $\pi^- p \to \eta n$ process

- J. Durand $^{(a)}$, B. Juliá-Díaz $^{(b)(c)}$, T.-S. H. Lee $^{(c)(d)}$, B. Saghai $^{(a)}$, T. Sato $^{(e)}$
- (a) Institut de Recherche sur les lois Fondamentales de l'Univers, DSM/IRFU, CEA/Saclay, 91191 Gif-sur-Yvette, France
 - (b) Facultat de Fisica, Universitat de Barcelona, E-08028 Barcelona, Spain
- (c) Excited Baryon Analysis Center (EBAC), Thomas Jefferson National Accelerator Facility, Newport News, VA 22901, USA
 - (d) Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA
 - (e) Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

A dynamical coupled-channel formalism [1], proven to be successful in studying $\pi N \to \pi N$ reactions [2], is used to investigate the η -meson production on the proton induced by pions. The goal is to investigate the reaction mechanism and to extract the relevant nucleon resonances (N^*) parameters from the cross-section data, in the total center-of-mass energy region from threshold up to $W \approx 2$ GeV.

The coupled-channel equations are derived from standard projection operator techniques. The non-resonant interactions are deduced from a unitary transformation method [3], applied on a set of phenomenological Lagrangians.

This approach includes intermediate πN , ηN , $\pi \Delta$, σN , and ρN channels and all 3 and 4 star resonances with $M \leq 2$ GeV, namely, $S_{11}(1535)$, $S_{11}(1650)$, $P_{11}(1440)$, $P_{11}(1710)$, $P_{13}(1720)$, $D_{13}(1520)$, $D_{13}(1700)$, $D_{15}(1675)$, and $F_{15}(1680)$.

Differential cross section data [4] for the reaction $\pi^- p \to \eta n$ has been fitted, leading to a reduced $\chi^2 = 1.96$.

We will present our results for differential and total cross sections compared to the data. The dominant ingredients of the reaction mechanism will be singled out. Predictions for the $\eta p \to \eta p$ total cross section, as well as for the ηN scattering length will be reported and discussed with respect to the findings by other authors.

- [1] A. Matsuyama, T. Sato, and T.-S.H. Lee, Phys. Rept. **439**, 193 (2007).
- [2] B. Juliá-Díaz, T.-S.H. Lee, A. Matsuyama, and T. Sato, Phys. Rev. C 76, 065201 (2007).
- [3] T. Sato and T. S. H. Lee, Phys. Rev. C **54** 2660 (1996).
- [4] S. Prakhov et al., Phys. Rev. C 72, 015203(2005); W. Deinet et al., Nucl. Phys. B 11, 495 (1969); W. B. Richards et al., Phys. Rev. D 1, 10 (1970). N. C. Debenham et al., Phys. Rev. D 12, 2545(1975); R. M. Brown et al., Nucl. Phys. B 153, 89(1979).

E-mail: johan.durand@cea.fr