

Structure of Scalar Mesons

T. Branz

Introduction Hadronic Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit Nonlocal interaction Results

Strong Decays Results

Conclusions

Structure of the Scalar Mesons $f_0(980) \mbox{ and } a_0(980)$

Tanja Branz

Institut für Theoretische Physik Universität Tübingen

Structure of Scalar Mesons

T. Branz

Introduction

Hadronic Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit Nonlocal interaction Results

Strong Decays

Results

Conclusions

Introductory remarks:

- The scalars $f_0(980)$ and $a_0(980)$ as molecular states
- Phenomenological model for molecular states

Outline

Structure of Scalar Mesons

T. Branz

Hadronic Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit Nonlocal interaction Results

Strong Decays Results

Conclusions

Introductory remarks:

- The scalars $f_0(980)$ and $a_0(980)$ as molecular states
- Phenomenological model for molecular states
 - Electromagnetic $f_0(980)$ and $a_0(980)$ decays
 - Strong decays

Outline

Structure of Scalar Mesons

T. Branz

Introduction

Hadronic Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit Nonlocal interaction Results

Strong Decays Results

Conclusions

Introductory remarks:

- The scalars $f_0(980)$ and $a_0(980)$ as molecular states
- Phenomenological model for molecular states
 - Electromagnetic $f_0(980)$ and $a_0(980)$ decays
 - Strong decays
- 8 Results
- Onclusions and outlook

Based on: together with Thomas Gutsche and Valery Lyubovitskij arXiv:0712.0354

Motivation: Hadronic Molecules

Structure of Scalar Mesons

EBERHARD KARLS UNIVERSITÄT TÜRINGEN

T. Branz

Introduction

Hadronic Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit

Nonlocal interaction

Results

Strong Decays

Results

Conclusions

Many different interpretations for the $f_0(980)/a_0(980)$ structure:

• $q\bar{q}$, $q^2\bar{q}^2$ [Jaffe], $K\bar{K}$ [Weinstein, Isgur], ...

Motivation: Hadronic Molecules

Structure of Scalar Mesons

UNIVERSITÄT

Composition Karls

T. Branz

Introduction Hadronic Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit Nonlocal interaction Results

Strong Decays Results

Conclusions

Many different interpretations for the $f_0(980)/a_0(980)$ structure: • $a\bar{q}$, $a^2\bar{a}^2$ [Jaffe], $K\bar{K}$ [Weinstein, Isgur], ...

Evidence supporting the $K\bar{K}$ -molecule picture

- Mass degeneracy of f_0 and a_0
- **2** QCD sum rules¹ & lattice QCD²:
 - $m_{q^2 \bar{q}^2} < m_{q \bar{q}}$, (¹Chen (2007), ²Alford, Jaffe (2004))

• f_0/a_0 -masses slightly below $K\bar{K}$ threshold.

Motivation: Hadronic Molecules

Structure of Scalar Mesons

UNIVERSITÄT

EDERHARD KARLS

T. Branz

Introduction Hadronic Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit Nonlocal interaction Results

Strong Decays Results

Conclusions

Many different interpretations for the $f_0(980)/a_0(980)$ structure: • $a\bar{a}$, $a^2\bar{a}^2$ [Jaffe], $K\bar{K}$ [Weinstein, Isgur], ...

Evidence supporting the $K\bar{K}$ -molecule picture

- Mass degeneracy of f_0 and a_0
- **QCD** sum rules¹ & lattice QCD²:
 - $m_{q^2 ar{q}^2} < m_{q ar{q}}$, (¹Chen (2007), ²Alford, Jaffe (2004))

• f_0/a_0 -masses slightly below $K\bar{K}$ threshold.

Further candidates for molecular structure³:

$D_{s0}^{*}(2317)$	=	KD	$B^*_{s0}(5725) \ = B \ ar{K}$
$D_{s1}(2460)$	=	D^*K	$B_{s1}(5778) = B^* \bar{K}$

(Fässler, Gutsche, Lyubovitskij, Ma (2007/2008))

 $\Delta\Delta$ System (Clement *et al.*, Bashkanov *et al.*)

Structure of Scalar Mesons

T. Branz

Introduction Hadronic Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

> Local limit Nonlocal interaction Results

Strong Decays Results

Conclusions

Phenomenological Model for Hadronic Molecules¹

covariance

full gauge invariance finite size effects

one size parameter

coupling g_{SKK} fixed self-consistently

Consistent evaluation of decay properties

∜

¹Fässler, Gutsche, Ivanov, Lyubovitskij, Wang, Phys. Rev. D 68 (2003) 014011

STEHARD KARLS UNIVERSITÄT TÜBINGEN

The Model - Basics

Structure of Scalar Mesons

T. Branz

Introduction Hadronic Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit Nonlocal interaction Results

Strong

Decays Results

- . .

Conclusions

Assume pure molecular structure of $f_0(980)$ and $a_0(980)$

$$|f_0/a_0
angle=rac{1}{\sqrt{2}}\Big(ig| \mathcal{K}^+\mathcal{K}^-ig
angle\pmig| \mathcal{K}^0ar{\mathcal{K}^0}ig
angle\Big)$$

The coupling between molecule and constituents

$$\mathcal{L}_{f_0K\bar{K}}(x) = g_{f_0K\bar{K}}f_0(x) \int dy \, \Phi(y^2)\bar{K}\left(x - \frac{y}{2}\right)K\left(x + \frac{y}{2}\right)$$

$$\mathcal{K} = \left(\begin{array}{c} \mathcal{K}^+ \\ \mathcal{K}^0 \end{array}\right)$$

Eberhard Karls Universität Tübingen

The Model - Basics

Structure of Scalar Mesons

T. Branz

Introduction Hadronic Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit Nonlocal interaction Results

Strong Decays Results

Conclusions

Assume pure molecular structure of $f_0(980)$ and $a_0(980)$

$$|f_0/a_0
angle=rac{1}{\sqrt{2}}\Big(ig| \mathcal{K}^+\mathcal{K}^-ig
angle\pmig| \mathcal{K}^0ar{\mathcal{K}^0}ig
angle\Big)$$

The coupling between molecule and constituents

$$\mathcal{L}_{f_0 K \bar{K}}(x) = g_{f_0 K \bar{K}} f_0(x) \int dy \, \Phi(y^2) \bar{K} \left(x - \frac{y}{2} \right) K \left(x + \frac{y}{2} \right)$$
$$K = \begin{pmatrix} K^+ \\ K^0 \end{pmatrix}$$

Gaussian form factor allows for finite size of the hadr. molecule $\Phi(y^2) = \int \frac{d^4k}{(2\pi)^4} e^{-iky} \widetilde{\Phi}(-k^2), \quad \widetilde{\Phi}(k_E^2) = \exp(-k_E^2/\Lambda^2)$ $\Lambda \approx 1 \text{ GeV}$

Local case (point-like interaction): $\Lambda \rightarrow \infty$

The Model - Coupling $f_0 K \bar{K}$

Structure of Scalar Mesons

T. Branz

Introduction Hadronic Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit Nonlocal interaction Results

Strong

Decays Results

Conclusions

Compositeness Condition¹

Field renormalization constant Z_{f_0} : Matrix element between bare and physical field.

 f_0 composite object $\Leftrightarrow Z_{f_0} = 0$.

The Model - Coupling $f_0 K \bar{K}$

Structure of Scalar Mesons

T. Branz

Introduction Hadronic Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit Nonlocal interaction Results

Strong Decays Results

Conclusions

Compositeness Condition¹

Field renormalization constant Z_{f_0} : Matrix element between bare and physical field.

 f_0 composite object $\Leftrightarrow Z_{f_0} = 0$.

The coupling $g_{f_0K\bar{K}}$ determined self-consistently by

$$Z_{f_0} = 1 - g_f^2 \tilde{\Pi}'(m_{f_0}^2) = 0$$
.

The Model - Coupling f₀KK

Structure of Scalar Mesons

T. Branz

Introduction Hadronic Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit Nonlocal interaction Results

Strong

Decays

Results

Conclusions

Compositeness Condition¹

Field renormalization constant Z_{f_0} : Matrix element between bare and physical field.

 f_0 composite object $\Leftrightarrow Z_{f_0} = 0$.

The coupling $g_{f_0K\bar{K}}$ determined self-consistently by

$$Z_{f_0} = 1 - g_f^2 \tilde{\Pi}'(m_{f_0}^2) = 0$$
.

$$g_{f_0} = 3.21 - 3.03 \text{ GeV} (\Lambda = 0.7 - 1.3 \text{ GeV})$$

2.90 GeV (local vertex function) g_{f_0}

1

Structure of Scalar Mesons

UNIVERSITÄT TÜBINGEN

T. Branz

Introduction

Hadronic Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit Nonlocal interaction Results

Strong Decays Results

Conclusions

Electromagnetic fields are included via minimal substitution

$$\partial^\mu {\sf K}^\pm o (\partial^\mu \mp {\it ie} {\sf A}^\mu) {\sf K}^\pm$$

$$\mathcal{L}_{int}^{em} = ieA^{\mu} \left(K^{-} \partial_{\mu} \bar{K}^{+} - K^{+} \partial_{\mu} K^{-} \right) + e^{2} A^{2} K^{+} K^{-}$$

The Model - Gauge Invariance I

Structure of Scalar Mesons

T. Branz

Introduction Hadronic Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit

Nonlocal interaction

Results

Strong Decays Results

Conclusions

Strong interaction Lagrangian is nonlocal.

$$\mathcal{L}_{int}^{str} = g_{f_0 K \bar{K}} f_0(x) \int dy \Phi(y) \bar{K} \left(x - \frac{y}{2} \right) K \left(x + \frac{y}{2} \right)$$

Gauged by applying

$$\mathcal{K}^{\pm}(y)
ightarrow e^{\pm i e I(y,x)} \mathcal{K}^{\pm}(y), \quad I(y,x) = \int\limits_{x}^{y} dz_{\mu} A^{\mu}(z) \quad 1$$

$$\mathcal{L}_{int}^{str+em} = g_{f_0 K \bar{K}} f_0(x) \int dy \Phi(y) \Big[K^+ \Big(x - \frac{y}{2} \Big) e^{iel(x - \frac{y}{2}, x)} \\ \times e^{-iel(x, x + \frac{y}{2})} K^- \Big(x + \frac{y}{2} \Big) + \bar{K}^0 \Big(x - \frac{y}{2} \Big) K^0 \Big(x + \frac{y}{2} \Big) \Big]$$

¹J. Terning, Phys. Rev. D44, 887 (1991)

MESON 2008 (Cracow, Poland)

T. Branz Structure of Scalar Mesons

REHARD KARLS UNIVERSITÄT TÜBINGEN

The Model - Gauge Invariance II

Expansion in electromagnetic field yields:

Structure of Scalar Mesons

T. Branz

Introduction Hadronic Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit

interaction

Strong Decays Results

MESON 2008 (Cracow, Poland)

Radiative Decays $\phi \rightarrow \gamma S$ ($S = a_0, f_0$) UNIVERSITÄT TÜBINGEN $\mathcal{L}_{\phi K \bar{K}} = \frac{g_{\phi K \bar{K}}}{\sqrt{2}} \phi^{\mu} \left(\bar{K} i \partial_{\mu} K - K i \partial_{\mu} \bar{K} \right)$ Structure of Scalar Mesons T. Branz $= g_{\rho\pi\pi} = 6$ (SU(3) symmetry relations²) *g*_{фK}k Diagrams contributing to the $\phi \rightarrow \gamma S$ decay process Introduction Hadronic Molecules ~~~~ [^] Theoretical KKFramework Compositeness q_2 Condition KKRadiative q_1 Decays K K Local limit (a) (b) interaction Results Strong KK q_1 Decays Results Conclusions K \bar{K} (c) ²Zhang et al., Phys. Rev. D 74 (2006) 014013

MESON 2008 (Cracow, Poland)

T. Branz Structure of Scalar Mesons

Radiative Decays $f_0/a_0 \rightarrow \gamma V$ ($V = \rho, \omega$)

Structure of Scalar Mesons

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

T. Branz

Introduction Hadronic

Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit

Nonlocal interaction

Results

Strong Decays

Results

Conclusions

$$\mathcal{L}_{\omega K\bar{K}} = \frac{g_{\omega K\bar{K}}}{\sqrt{2}} \omega^{\mu} \left(\bar{K}i\partial_{\mu}K - Ki\partial_{\mu}\bar{K}\right)$$
$$\mathcal{L}_{\rho K\bar{K}} = \frac{g_{\rho K\bar{K}}}{\sqrt{2}} \rho^{\mu} \left(\bar{K}\vec{\tau}i\partial_{\mu}K - K\vec{\tau}i\partial_{\mu}\bar{K}\right), \quad \vec{\tau} = (\tau^{+}, \tau^{0}, \tau^{-})$$

$$g_{\omega K\bar{K}} = g_{\rho K\bar{K}} = \frac{g_{\rho \pi\pi}}{\sqrt{2}} = 4.24$$

Diagrams contributing to the $a_0^{\pm} \rightarrow \gamma \rho^{\pm}$ decay process

MESON 2008 (Cracow, Poland)

Structure of Scalar Mesons

Results $f_0/a_0 \rightarrow \gamma \gamma$

Structure of Scalar Mesons

T. Branz

Introduction Hadronic Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit Nonlocal interaction Results

Results

Strong Decays Results

Experiment	$\Gamma(f_0 o \gamma \gamma)$ [keV]
PDG (2007)	$0.29^{+0.07}_{-0.09}$
BELLE (2007)	$0.205^{+0.095+0.147}_{-0.083-0.117}$
Crystal Ball Collab. (1990)	$0.31 \pm 0.14 \pm 0.09$
SLAC Mark II (1990)	$0.29 \pm 0.07 \pm 0.12$
Our result	0.21-0.26 (∧=0.7-1.3 GeV) 0.29 (local)

Results $f_0/a_0 \rightarrow \gamma \gamma$

Structure of Scalar Mesons

T. Branz

Introductio	on
Hadronic Molecules	

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit Nonlocal interaction Results

Strong Decays Results

Experiment	$\Gamma(f_0 \rightarrow \gamma \gamma)$ [keV]	
PDG (2007)	$0.29^{+0.07}_{-0.09}$	
BELLE (2007)	$0.205^{+0.095+0.147}_{-0.083-0.117}$	
Crystal Ball Collab. (1990)	$0.31 \pm 0.14 \pm 0.09$	
SLAC Mark II (1990)	$0.29 \pm 0.07 \pm 0.12$	
Our result	0.21-0.26 (Λ=0.7-1.3 GeV) 0.29 (local)	
Experiment	$\Gamma(a_0 o \gamma \gamma)$ [keV]	
Crystal Barrel (1997)	0.3 ± 0.1	
Our result	0.20-0.21 (A=1.0-1.3 GeV) 0.23 (local)	

NARD KARLS UNIVERSITÄT TÜBINGEN EBERHARD KARLS

Str

Results Strong Decays Results Conclusions

Useful to determine Meson Structure?

Structure of Scalar Mesons	Reference	Meson structure	$\Gamma(f_0 \rightarrow \gamma \gamma)$ [keV]
T. Branz	Schumacher (2006)	$(q\bar{q})$	0.33
Introduction	Scadron et al. (2004)	$(q\bar{q})$	0.31
Hadronic Molecules	Achasov et al. (1982)	$(q^2 \bar{q}^2)$	0.27
Framework	Oller, Oset (1998)	(hadronic)	0.20
Condition Radiative	Hanhart et al. (2007)	(hadronic)	0.22 ± 0.07
Decays Local limit	Our result	(hadronic)	0.25 (NL); 0.29 (LC)
interaction			

BERHARD KARLS UNIVERSITÄT TÜBINGEN

Useful to determine Meson Structure?

Structure of Scalar Mesons		Reference	Meson structure	$\Gamma(f_0 \rightarrow \gamma \gamma) \text{ [keV]}$
T. Branz		Schumacher (2006)	$(q\bar{q})$	0.33
Introduction		Scadron et al. (2004)	$(q\bar{q})$	0.31
Hadronic Molecules		Achasov et al. (1982)	$(q^2 \bar{q}^2)$	0.27
Framework		Oller, Oset (1998)	(hadronic)	0.20
Condition Radiative		Hanhart et al. (2007)	(hadronic)	0.22 ± 0.07
Decays - Local limit	Our result	(hadronic)	0.25 (NL); 0.29 (LC)	
interaction Results				
Strong		Reference	Meson structure	$\Gamma(a_0 \rightarrow \gamma \gamma)$ [keV]
Results		Anisovich et al. (2002)	qā	$0.3^{+0.11}_{-0.10}$
Conclusions	Achasov et al. (1982)	$q^2 \bar{q}^2$	0.27	
		Oller, Oset (1998)	(hadronic)	0.78
		Our result	(hadronic)	0.21 (NL); 0.23 (LC)

Form Factor for different Size Parameters Λ .

(NC: Nonlocal case, LC: Local case)

 $F_{f_0\gamma\gamma^*}$ (one off-shell photon) is sensitive to the size parameter Λ and therefore provides an opportunity to deduce the f_0 structure.

MESON 2008 (Cracow, Poland)

Structure of Scalar Mesons

T. Branz

Introduction Hadronic Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit Nonlocal interaction Results

Strong Decays

Results

Conclusions

Results $\phi \rightarrow S\gamma$:

$$\Gamma(\phi \rightarrow a_0 \gamma) = 0.34 \text{ keV}$$

 $\Gamma(\phi \rightarrow f_0 \gamma) = 0.57 \text{ keV}$

Data $\phi \rightarrow S\gamma$:

PDG (2007):
$$\Gamma_{\phi a_0 \gamma} = 0.30 - 0.35 \text{ keV}$$

 $\Gamma_{\phi f_0 \gamma} = 0.44 - 0.51 \text{ keV}$
CMD2 (1999): $\Gamma_{\phi f_0 \gamma} = 0.426 - 0.924 \text{ keV}$

Structure of Scalar Mesons

T. Branz

Introduction Hadronic Molecules

Results:

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit Nonlocal interaction Results

Strong Decays Results

$\Gamma(a_0 \rightarrow \rho \gamma)$	=	6.60 keV ($\Lambda = 1$ GeV);	7.19 keV (local)
$\Gamma(f_0 \rightarrow \rho \gamma)$	=	7.59 keV ($\Lambda = 1$ GeV);	8.10 keV (local)
$\Gamma(a_0 \to \omega \gamma)$	=	6.23 keV ($\Lambda = 1$ GeV);	6.77 keV (local)
$\Gamma(f_0 \rightarrow \omega \gamma)$	=	7.13 keV ($\Lambda = 1$ GeV);	7.58 keV (local)

Structure of Scalar Mesons

Eberhard Karls Universität Tübingen

T. Branz

Introduction Hadronic Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit Nonlocal interaction Results

Strong Decays

Results

Conclusions

Interaction Lagrangian

$$\mathcal{L}_{K^*K\pi} = \frac{g_{K^*K\pi}}{\sqrt{2}} \left((K^*_{m\mu})^{\dagger} \vec{\pi} \vec{\tau}_{mn} i \partial^{\vec{\mu}} K_n \right) + h.c.$$

Decay is illustrated by

Structure of Scalar Mesons

UNIVERSITÄT TÜBINGEN

T. Branz

Introduction Hadronic Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit Nonlocal interaction Results

Strong Decays

Results

Conclusions

Interaction Lagrangian

$$\mathcal{L}_{K^*K\pi} = \frac{g_{K^*K\pi}}{\sqrt{2}} \left((K^*_{m\mu})^{\dagger} \vec{\pi} \vec{\tau}_{mn} i \partial^{\vec{\mu}} K_n \right) + h.c.$$

Decay is illustrated by

$$\Rightarrow S_{K^* \mu \nu}^T (x - y) = S_{K^* \mu \nu}^V (x - y) + \frac{i}{m_{K^*}^2} g_{\mu \nu} \delta^{(4)} (x - y)$$

MESON 2008 (Cracow, Poland)

Structure of Scalar Mesons

UNIVERSITÄT TÜBINGEN

T. Branz

Introduction Hadronic Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit Nonlocal interaction Results

Strong Decays

Results

Conclusions

Interaction Lagrangian

$$\mathcal{L}_{K^*K\pi} = \frac{g_{K^*K\pi}}{\sqrt{2}} \left((K^*_{m\mu})^{\dagger} \vec{\pi} \vec{\tau}_{mn} i \partial^{\vec{\mu}} K_n \right) + h.c.$$

Decay is illustrated by

$$\Rightarrow S_{K^*\mu
u}^T(x-y) = S_{K^*\mu
u}^V(x-y) + rac{i}{m_{K^*}^2}g_{\mu
u}\delta^{(4)}(x-y)$$

Structure of Scalar Mesons

UNIVERSITÄT TÜBINGEN

T. Branz

Introduction

Hadronic Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit

Nonlocal interaction Results

Strong

Decays

Results

Conclusions

$\mathcal{L}_{K^{*}K\pi} = \frac{g_{K^{*}K\pi}}{\sqrt{2}} \left((K_{m\mu}^{*})^{\dagger} \vec{\pi} \vec{\tau}_{mn} i \partial^{\vec{\mu}} K_{n} \right) + h.c.$

Decay is illustrated by

Interaction Lagrangian

& lowest order ChPT

Structure of Scalar Mesons

UNIVERSITÄT TÜBINGEN

T. Branz

Introduction Hadronic Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit Nonlocal interaction Results

Strong Decays

Results

Conclusions

Interaction Lagrangian

$$\mathcal{L}_{K^*K\pi} = \frac{g_{K^*K\pi}}{\sqrt{2}} \left((K^*_{m\mu})^{\dagger} \vec{\pi} \vec{\tau}_{mn} i \partial^{\vec{\mu}} K_n \right) + h.c.$$

Decay is illustrated by

$$\Rightarrow S^{T}_{K^{*}\mu
u}(x-y) = S^{V}_{K^{*}\mu
u}(x-y) + rac{i}{m^{2}_{K^{*}}}g_{\mu
u}\delta^{(4)}(x-y)$$

& lowest order ChPT

Results Strong Decays

Structure of Scalar Mesons

T. Branz

Introduction Hadronic Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit Nonlocal interaction Results

Strong Decays

Results

Data	$\Gamma(f_0 \to \pi \pi) $ [MeV]
PDG (2007) (total width)	40 - 100
BELLE (2007)	$51.3^{+20.8+13.2}_{-17.7-3.8}$
Analysis (Anisovich 2002)	64 ± 8
Our result	69 (Λ=1 GeV)

Results Strong Decays

Structure	o
Scalar	
Mesons	

T. Branz

Introduction
Hadronic
Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit Nonlocal interaction Results

Strong Decays

Results

Data	$\Gamma(f_0 \to \pi \pi) $ [MeV]
PDG (2007) (total width)	40 - 100
BELLE (2007)	$51.3^{+20.8+13.2}_{-17.7-3.8}$
Analysis (Anisovich 2002)	64 ± 8
Our result	69 (A=1 GeV)
Data	$\Gamma(a_0 o \pi \eta) \; [MeV]$
PDG (2007) (total width)	50 - 100
L3 Collab. (2002)	$50\pm13\pm4$
WA102 (2000)	61 ± 19
Our result	59 (A=1 GeV)

Conclusions and Outlook

Structure of Scalar Mesons

UNIVERSITÄT TÜBINGEN

Composition Karls

T. Branz

Introduction Hadronic Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit Nonlocal interaction Results

Strong Decays Results

Conclusions

- Covariant and full gauge invariant framework to describe the properties of a hadronic molecule.
- Results of the decays

 $\begin{array}{ccccc} a_0/f_0 & \to & \gamma\gamma \\ \phi & \to & \gamma a_0/\gamma f_0 \\ a_0/f_0 & \to & \gamma\rho/\gamma\omega \end{array} & \begin{array}{cccc} f_0 & \to & \pi\pi \\ & a_0 & \to & \pi\eta \end{array}$

are in good agreement with experimental measurements.

• Additional observable: Form factor $F_{f_0\gamma\gamma^*}$

Outlook

- a_0-f_0 mixing
- Heavy quark meson decays e.g. $D_{s0}^*(2317) \rightarrow f_0 \rho / f_0 \pi$, $D_{s1}(2460) \rightarrow f_0 \pi$, $B_{s0}(5725) \rightarrow f_0...$

Structure of Scalar Mesons

T. Branz

Introduction Hadronic

Hadronic Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit Nonlocal interaction Results

Strong Decays Results

Conclusions

Thank you for your attention!

Eberhard Karls Universität Tübingen

References I

Structure of Scalar Mesons

T. Branz

Introduction Hadronic Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit Nonlocal interaction Results

Strong Decays Results

Conclusions

- T. Mori et al. [Belle Collaboration], Phys. Rev. D 75, 051101 (2007) [arXiv:hep-ex/0610038].
- T. Barnes, Phys. Lett. B 165, 434 (1985).

H. Marsiske et al. [Crystal Ball Collaboration], Phys. Rev. D 41, 3324 (1990).

- J. Boyer et al., Phys. Rev. D 42, 1350 (1990).
- A. V. Anisovich, V. V. Anisovich and V. A. Nikonov, Eur. Phys. J. A 12, 103 (2001) [arXiv:hep-ph/0108186].
- M. Schumacher, Eur. Phys. J. A **30**, 413 (2006) [Erratum-ibid. A **32**, 121 (2007)] [arXiv:hep-ph/0609040].
- N. N. Achasov, S. A. Devyanin and G. N. Shestakov, Phys. Lett. B 108, 134 (1982) [Erratum-ibid. B 108, 435 (1982)].
- J. A. Oller and E. Oset, Nucl. Phys. A 629, 739 (1998) [arXiv:hep-ph/9706487].
- C. Hanhart, Yu. S. Kalashnikova, A. E. Kudryavtsev and A. V. Nefediev, Phys. Rev. D 75, 074015 (2007) [arXiv:hep-ph/0701214].
- C. Amsler, Rev. Mod. Phys. 70, 1293 (1998) [arXiv:hep-ex/9708025].
- J. A. Oller, E. Oset, F. Guerrero and J. R. Pelaez, Nucl. Phys. A 663, 991 (2000) [arXiv:hep-ph/9908494].
- V. V. Anisovich, V. A. Nikonov and A. V. Sarantsev, Phys. Atom. Nucl. 65, 1545 (2002) [Yad. Fiz. 65, 1583 (2002)] [arXiv:hep-ph/0102338].

References II

Structure of Scalar Mesons

T. Branz

Introduction Hadronic Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit Nonlocal interaction Results

Strong Decays Results

- M. K. Volkov and V. L. Yudichev, Phys. Atom. Nucl. 64, 2006 (2001) [Yad. Fiz. 64, 2091 (2001)] [arXiv:hep-ph/0011326].
- V. V. Anisovich and A. V. Sarantsev, Eur. Phys. J. A 16, 229 (2003) [arXiv:hep-ph/0204328].
- M. D. Scadron, G. Rupp, F. Kleefeld and E. van Beveren, Phys. Rev. D **69**, 014010 (2004) [Erratum-ibid. D **69**, 059901 (2004)] [arXiv:hep-ph/0309109].
- D. Barberis et al. [WA102 Collaboration], Phys. Lett. B 488, 225 (2000) [arXiv:hep-ex/0007019].
- P. Achard et al. [L3 Collaboration], Phys. Lett. B 526, 269 (2002) [arXiv:hep-ex/0110073].

Structure of Scalar Mesons

T. Branz

Introduction

Hadronic Molecules

Theoretical Framework

Compositeness Condition

Radiative Decays

Local limit

Nonlocal interaction

Results

Strong

Decays Results

HARD KARLS UNIVERSITÄT TÜBINGEN EBERHARD KARLS

Results of the strong decays

Structure of Scalar Mesons	Reference	Meson structure	$\Gamma(f_0 \to \pi\pi)$ [MeV]
T. Branz	Barnes (1985)	$q\bar{q}$	400
Introduction	Volkov et al. (2001)	qq	28
Hadronic Molecules	Anisovich et al. (2003)	qq	52-58
Framework	Scadron et al. (2004)	qq	53
Condition Radiative	Oller et al. (2000)	hadronic	19.5
Decays Local limit	Our result	hadronic	69 (A=1 GeV)

Local lin Nonlocal interaction Results

Strong Decays Results

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

Sti

Results of the strong decays

Structure of Scalar Mesons		Reference	Meson structure	$\Gamma(f_0 \to \pi \pi) [\text{MeV}]$
T. Branz		Barnes (1985)	qq	400
Introduction Hadronic Molecules Theoretical Framework Compositeness Condition Radiative Decays Local limit Nonlocal interaction		Volkov et al. (2001)	qq	28
		Anisovich et al. (2003)	qq	52-58
		Scadron et al. (2004)	qq	53
		Oller et al. (2000)	hadronic	19.5
		Our result	hadronic	69 (A=1 GeV)
Results Strong Decays Results		Reference	Meson structure	$\Gamma(a_0 \rightarrow \pi \eta) \text{ [MeV]}$
		Barnes (1985)	qq	225
Conclusions		Scadron et al. (2004)	qq	138
		Oller et al. (2000)	hadronic	20
		Our result	hadronic	59 (A=1 GeV)

MESON 2008 (Cracow, Poland)