

10th International Workshop on Meson Production, Properties and Interaction KRAKÓW, POLAND 6 - 10 June 2008

Medium modifications of light vector mesons in photoproduction reactions at JLab

C. Djalali, M. H. Wood (University of South Carolina) R. Nasseripour (George Washington University)

D. P. Weygand (Jefferson Lab)

and CLAS Collaboration

Krakow, June 7, 2008

C. Djalali

Outline

- Physics Motivations
 - Why study in medium hadrons?
 - Models and Predictions
- Some key experiments
- Photo-production of vector mesons at JLab
 - ρ meson mass spectra
 - ω and ϕ absorption
- Summary and Outlook on Medium Modifications
- [\u03c6 photo-production on the nucleon]

Disclaimer: Not all experiments and models listed!

The study of medium modifications of hadrons has a long history in hadronic physics. Widespread theoretical and experimental work.

QCD vacuum is very complicated <q-qbar>, <GG>,etc...

-The spontaneous breaking of Chiral Symmetry in vacuum is at the origin of 98% of the mass of hadrons.

-The properties of hadrons ("excitations of the QCD vacuum") depend on these condensates.

-Changes in the medium of the properties of hadrons may signal: -Chiral symmetry restoration -exotic state of matter,....

As $<0|q\bar{q}|0> \Rightarrow 0$, Restoration of chiral symmetry.

Mass, decay, coupling constants will change.

Model predictions of the in medium properties of vector mesons

Bernard and Meissner, NPA 489 (1988) 647

C. Djalali

Model predictions of the in medium properties of vector mesons

M. Lutz et. al. , Nucl. Phys. A 705 (2002) 431

D. Cabrera et. al. , Nucl. Phys. A 705 (2002) 90

Krakow, June 7, 2008

C. Djalali

In RHI collisions (nuclear matter under extreme conditions)

First hint in e⁺e⁻ measurements CERES/NA45

D. Adamová et al., arXiv:nucl-ex/0611022

p+Au understood in terms of p+p superposition •Large excess observed in Pb+Au below 0.7 Gev/c²

•Recent analysis favors $\Gamma \nearrow$; no Δm

NA60: R Arnaldi et al., Phys. Rev. Lett. 96, 162302 (2006).

Medium modification of vector mesons properties in nuclei

The predicted medium modifications are large enough that even at normal nuclear density, one can expect to observe them, so: •Vector mesons can be produced in nuclei with probes that leave the nucleus in almost an equilibrium state γ , π , p• (probe) + A --> V X --> e⁺e⁻ X (no FSI)

"Elementary reactions"

(not exhaustive list):

Experimen	t Reactions	<u>Results</u>
TAGX	γ +³He> ρ +Χ (ρ->π⁺π⁻)	full BR, α ~ 0.06
• KEK	p+A-> ρ,ω,φ +X (ρ,ω->e ⁺ e ⁻)	α = 0.092±0.002
KEK	p+A-> 	α ~ 0.04
SPring-8	γ + A> φ +A *(φ> K ⁺ K ⁻)	no effect
TAPS	γ +A> ω+ X (ω> π ⁰ γ)	α~ 0.13-015
JLab-q7a	γ +A>(ρ,ω,φ)+ A* (VM>e +e ⁻)	α= 0.02±0.02
JPARC	p+A-> ρ.ω.ϕ+X (ρ.ω.ϕ->e+e⁻)	proposal #16
HADES	p+p.d-> 0.ω. φ+X (0.ω. φ->e + e ⁻)	(running)

-Only g7 with EM interaction in entrance and exit channels -TAGX, Spring8 and TAPS have hadronic FSI.

I.

$p+A \rightarrow \rho, \omega, \phi+X \ (\rho, \omega, \phi \rightarrow e+e-)$ M. Naruki et al, PRL 96 (2006) 092301

Subtract the background and constrain the ω/ρ ratio to include ρ Using a model that predicts the probability for ρ mesons decaying inside the nucleus.

 α = 0.092 +/- 0.002

"the fit ... reproduces the data qualitatively well"

Krakow, June 7, 2008

C. Djalali

<u>mass shift for low recoil momenta ϕ in Cu</u>

Experimental Results

Elementary Reactions Rel. Heavy-Ion

	KEK	CBELSA/TAPS	CERES	NA 60
Reaction	pA → (ρ,ω,φ) A' VM → e+e-	$\begin{array}{l} \gamma \: A \to \omega \: A' \\ \omega \to \pi^0 \gamma \end{array}$	p+Au,Pb+Au ρ → e+e-	ln+ln ρ → μ+μ-
Condition	ρ=0.53ρ ₀ , T~0 MeV	ρ=0.55ρ ₀ , T~0 MeV	158 A GeV	158 A GeV
Mass	Δm _ρ ~-9% Δm _φ ~ -4%	Δm _ω ~ -14%	Δm not favored	No mass shift
Width	$\Delta\Gamma_{ ho}$ = 0 MeV $\Gamma_{\phi}(ho= ho_{0})$ = 47 MeV	Γ _ω (ρ=ρ₀)≈140 MeV	Broadening favored	Strong broadening
Note	No direct extraction of ρ meson (BKGD)	π ⁰ FSI Large background	ρ, <mark>T not constant</mark>	ρ, T not constant
	M. Naruki et al, PRL96 (2006) R. Muto et al., <i>PRL98(2007)</i>	D. Trnka et al., PRL 94 (2005) M. Kotulla et al, <i>PRL 100(2008)</i>	D. Adamova et al, <i>PRL9(2003)</i> arXiv:nucl-ex/0611022(2006)	R. Arnaldi et al, <i>PRL96 (2006)</i>

- > Original idea:
 - P. Y. Bertin and P. A. M. Guichon, Phys Rev C42, 1133 (1990)
- > Jlab Experiment E01-112 (also called g7)

Spokespersons: C. Djalali (USC), M. Kossov (ITEP),

D. Weygand (Jlab)

- > Photon beam (minimal disturbance to initial sate) :
 - $E_{\gamma} \sim .6$ to 3.8 GeV (tagged γ)

Targets: LD₂, C, Ti, Fe, (Pb)

> Leptonic decay :

Almost no final state interaction! HOWEVER (NO FREE LUNCH!)

Low branching ratio : ~5 10⁻⁵

needs high photon flux : 5 10⁷ tagged γ /s

Krakow, June 7, 2008

C. Djalali

Hall B @ Jlab (The tagger)

Bremsstrahlung Tagging Spectrum (20%-95%)•E(e⁻) = 3.0 GeVE(γ) = 0.60 - 2.85 GeV•E(e⁻) = 4.0 GeVE(γ) = 0.80 - 3.80 GeV

Krakow, June 7, 2008

C. Djalali

Multi-Segment Nuclear Target

- Contains materials with different average densities.
- LD2 and seven solid foils of C, Fe, Pb, and Ti.
- Each target material 1 g/cm² and diameter 1.2 cm
- Approximately same number of nucleons/target

- Proper spacing 2.5 cm to reduce multiple scattering
- Deuterium target as reference, small nucleus, no modification is expected.

Particle Detection with CLAS

coincident electron pairs in the CLAS

ounts 300 200 ω 100 0 0.6 0.2 0.8 0.4 1.2 0 e⁺e⁻ Invariant Mass Spectra **<u>Caution</u>**: The treatment of the background

• Excellent π/e discrimination: 5.4x10 ⁻⁴ for one and 2.9x10⁻⁷ for two arms.

Krakow, June 7, 2008

Momentum corrections

Lepton momentum cuts

Target energy loss corrections

may change the estimation of the signal (ρ).

C. Djalali

Possible channels that contribute to e+e- mass spectrum

Correlated:

Monte-Carlo simulations using a model (BUU) by Mosel et al. (*Nucl. Phys. A671, 503 (2000)*) including various decay channels and nuclear effects, and CLAS detector simulation package (GSIM) Simulations with BUU includes all the e+e- decay channels with same strength.

•
$$\omega \rightarrow e+e-, \rho \rightarrow e+e-, \phi \rightarrow e+e-$$

• $\eta \rightarrow \gamma e+e-$
• $\omega \rightarrow \pi^0 e+e-$
GiBUU Code

"Semi-correlated":

> Bethe-Heitler

$$\succ \quad \gamma A \rightarrow \pi^0 \pi^0 X \rightarrow \gamma \text{ e+e- } \gamma \text{ e+e-}$$

calculated by Mosel's group \rightarrow negligible 2 π^0 Dalitz decay mixed \rightarrow negligible double Dalitz \rightarrow low mass

Uncorrelated:

Mixed event technique. Pairs of identical (e+e+, e-e-) leptons, which are produced only by combinatorial background provide a natural normalization and samples of uncorrelated particles.

The ρ **Mass Spectra**

After removing the ω , ϕ , and background contributions:

The ρ Mass Spectra

e⁺e⁻ Invariant Mass (GeV)

Target	Mass (MeV/c ²) CLAS data	Width(MeV/c ²) CLAS data	Mass(MeV/c ²) Giessen BUU	Width(MeV/c ²) Giessen BUU
² H	770.3 +/- 3.2	185.2 +/- 8.6	-	-
¹² C	762.5 +/- 3.7	176.4 +/- 9.5	773.8 +/- 0.9	177.6 +/- 2.1
⁴⁸ Ti- ⁵⁶ Fe	779.0 +/- 5.7	217.7 +/- 14.5	773.8 +/- 5.4	202.5 +/- 11.6

The vacuum properties of the ρ meson are: m=770 MeV/c² and Γ =150 MeV. Broadening of the width is consistent with many-body effects.

Summary on the ρ meson

- -Our result (α =0.02 ± 0.02) is compatible with no mass shift
- -Result does not confirm the KEK results ($\alpha \sim 0.09$).
- -Rule out Δm à la Brown/Rho (20%) and
- Hatsuda/Lee ($\alpha \sim 0.16$)
- -Width reproduced by GiBUU
- -Mass spectra not directly comparable with spectral function!
- -Momentum of ρ between 0.8 and 2 GeV
- -Need to study momentum dependence
- PRL published R. Nasseripour et al., PRL 99 (2007) 262302
- PRC submitted February 2008. M. Wood et al., arXiv:0803.0492v1 [nucl-ex]

Absorption of ω Meson and its in-medium width

The in-medium width is $\Gamma = \Gamma_0 + \Gamma_{coll}$ where $\Gamma_{coll} = \gamma \rho v \sigma^*_{VN}$ $12 \cdot \sigma_{\gamma A \to \omega X}$ **Transparency ratio:** $\sigma_{\gamma A \rightarrow \omega X}$ T_{norm} $T_A =$ $A \cdot \sigma_{v^{12}C \to \omega X}$ $A \cdot \sigma_{\gamma N \to \omega X}$ P. Mühlich and U. Mosel NPA 773 (2006) 156 Kaskulov, Hernandez & Oset EPJ A 31 (2007) 245 Valencia Model Giessen Model aliminary preliminary 0.75 0.5 $\Gamma = 30 \text{ MeV}$ $\Gamma = 60 \text{ MeV}$ 0.25 $\Gamma = 50 \text{ MeV}$ $\Gamma = 105 \text{ MeV}$ $\Gamma = 90 \text{ MeV}$ Γ = 149 MeV $\Gamma = 150 \text{ MeV}$ $\Gamma = 193 \text{ MeV}$ $\Gamma = 210 \text{ MeV}$ Γ = 236 MeV 0 150 200 200 50 100 150 50 100 0 0 Α Normalized to carbon Α Latest TAPS Γ_ω~130-150 MeV JLab (preliminary) JLAB preliminary results consistent! TAPS (PRL100(2008)192302)

Proposed JLab run

Comparison to Theory – ϕ -Meson

Spring8 $\gamma A \rightarrow \phi A' \rightarrow K^+K^- A' (E\gamma=1.5-2.4 \text{ GeV})$

Large statistical error bars.

Summary and Conclusions (Medium Modifications)

CLAS excellent tool for these studies:

- e⁺e⁻ from rare leptonic decay of light vector mesons are identified.
- •Clear ρ , ω and ϕ signals in the invariant mass spectrum.
- "Mixed-event" technique gives both shape and normalization of the combinatorial background

The ρ meson (Final):

- •Correct mass shape is extracted.
- No mass shift and width increased by 40% in Fe (as predicted by GiBUU) The ω meson (preliminary):
- •From transparency ratios, width $\sim 150 200 \text{ MeV}!$

The ϕ meson (preliminary):

From transparency ratios, in medium total cross section ~ 30 - 40 mb

Medium modification studies continue to be a hot topic!

Next at Jlab by g7 group:

- . High Statistics measurement of e^+e^- production on H_2
- Conditionally approved g7b high statistics data on LD_2 , C, Fe, Nb and Sn to measure the ρ meson mass spectra in four momentum bites from 0.4 to 2 GeV/c and transparency ratios.

Photoproduction (Total Cross Section) Dave Tedeschi (USC, tedeschi@sc.edu)

Outstanding questions due to the lack of data near threshold.

Jefferson Lab energy regime can probe the transition from low energy (CQM,Phenom. Models) to the high energy (pQCD, dim. Scaling).

```
CLAS (JLab)
```

```
g1c: 1.6 < Eγ < 2.4 GeV</li>
g11: 1.6 < Eγ < 3.6 GeV</li>
```

```
LEPS (SPring-8)
```

- 1.6 < Eγ < 2.4 GeV</p>
- Mibe *et al.*, Phys. Rev. Lett. 95, 182001 (2005).

SAPHIR (Bonn)

1.6 < Eγ < 2.8 GeV</p>

Barth *et al.*, Eur. Jour. Phys A17, 269 (2003).

The Experiment

Measure over range of (s,t)

Differential cross section $d\sigma/dt$ (production plane) Decay angular distribution $d\sigma/d\cos(\theta)$ (decay plane)

Mechanisms have different kinematic and spin signatures Separate contributions through angular distributions and asymmetries

large ltl: Parton structure important

- \rightarrow Dressed quark and gluon propagators
- → Constituent quark wave functions

low ltl: cross section driven by integral properties (2g \sim P)

Comparison w/ Regge Theory

- Saturated Regge Trajectories
- No Baryon Resonances
- Model is successful for both photo and electroproduction
 - Moderate-t rise not accounted for
 - High-t rise in cross section accounted for by u-channel only at high energy

J.M. Laget, Private Communication

Work in progress