

Meson and Di-Electron Production: Recent Results from HADES

Ingo Fröhlich for the HADES collaboration

Motivation

- Hadrons ($\eta \alpha \delta \rho \circ \sigma$, heavy objects)
 - Possible mechanism for mass generation: chiral symmetry breaking (as explained by C. Djalali)
 - Approach: determine properties of hadronic matter
- at:
 - Different temperatures and/or densities
- Examples
 - Normal ("cold") nuclear matter: ρ_0 , T=0
 - Heavy ion reactions,
 - either <u>dense</u> ($\rho > \rho_0$, T>0) or <u>hot</u> ($\rho < \rho_0$, T>>)
 - Neutron stars

Outline

- Introduction (cont.)
- The detector setup & performance
- C+C at 1 and 2 AGeV
- p+p and p+n at 1.25 GeV
- Vector meson production
- Outlook

René Magritte: Le Château des Pyrenées, 1959

The "Light" from Dense Matter

Di-leptons are ideal probes (already outlined by C. Djalali)

- Heavy ion reactions
 - SIS18/GSI: 1-2 AGeV
 - Dense matter
 - Dominated by resonances
 - ρ produced & decayed inside dense phase

Contributions to Cocktail

 $, \triangle$ = resonances

Short-lived components

 $\rho \rightarrow e^+e^-$ - $\Delta, N^* \rightarrow Ne^+e^-$

to be studied

- Long-lived components:
 - $\pi^{0}/\eta \rightarrow \gamma e^{+}e^{-}$ $\omega \rightarrow (\pi^{0})e^{+}e^{-}$

known properties

- Strategy:
 - Subtract long-lived components
- Key to electromagnetic structure of dense matter

Frankfurt

Detector Features

- Normalization:
 - <u>Independent</u>
 measurement of
 hadronic products
- Large pair acceptance over (almost) full mass range

→ Fixes π^0 contribution

HADES: The <u>High Acceptance Di-Electron Spectrometer</u> or <u>Hadron And Di-Electron Spectrometer</u>

Schedule

	2002	2004	2005	2006	2007	2008	2009	2010	2011	2012-
-rankfurt	C+C 2 AGeV	C+C 1 AGeV	Ar+KCl 1.75 AGeV				e.g.	Au+Au, In 1-2 AGeV	+ln	
/ersity of I		р+р 2.2 GeV		р+р 1.25 GeV	d+p 1.25					
sics, Univ					AGeV p+p 3.5 GeV	p+A 3.5 GeV				
clear Phy					upgrad DAQ	e: RPC,				
, Nu							π+	N,A		
e foi										8 AGeV
nstitut										

Institute for Nuclear Physics, University of Frankfurt

Detector Setup and Performance

HADES Layout

- Geometry
 - Full azimuthal coverage, polar angles 18° - 85°

Particle identification

- RICH: CsI solid photo cathode,
 - C_4F_{10} radiator
- TOF
- TOFino, (RPC in future)
- Pre-Shower

Momentum measurement

- Superconducting toroid
- MDCs: 24 multi-wire drift chambers
 - (<u>C+C: Only 12 MDCs</u>)
- Online event selection (level-2 trigger)

Performance: Pions

- Charged pion production under control
- NB for C+C - $\pi^0 = \frac{1}{2} (\pi^+ + \pi^-)$

Performance: Exclusive Reactions

- Performance studied in (<u>exclusive</u>) pp reactions (here: 2.2 GeV)
- pp \rightarrow pp $\eta \rightarrow$ <u>pp $\pi^+\pi^-\pi^0$ </u>

Exclusive Reaction: $pp \rightarrow pp \pi^0$

- [1-4] π⁰ simulation via resonance model
- Cross section consistent with [1]

Absolute scale (via pp elastic)

Virtual Photon Polarization

Additional observable to look into production mechanism

- dilepton θ^{ee} plane virtual photon plane $\phi_{\gamma*}^X$ production plane of source X
- Di-Lepton decay angles
 Polarizations
- e.g. helicity angle distribution ~1+a·cos²θ

η: a=-1 [1]
 [1] E.L. Bratkovskaya, et al., Phys.Lett. B348 (1995) 283.
 collaboration – Meson 2008 – 6.6. - 10.6.2008

C+C @ 1 and 2 AGeV The DLS puzzle

"DLS puzzle"

- DLS heavy ion data
- Enhancement
 - Remained unexplained for a long time
 - Triggered speculations

HADES: C+C at 1/2 AGeV

[1] <u>DLS Data:</u> R.J. Porter et al.: PRL 79 (1997) 1229
[2] E.L. Bratkovkaya, Trento workshop
[3] C. Ernst et al., PRC 58 (1998) 447

I. Fröhlich for the HADES colla

HADES Pair Analysis

- C+C at 2AGeV
 - Lepton & pair selections
 - (e.g. >9° opening angle)
- Subtract combinatorial background
- Efficiency correction

details: see talk of F. Krizek, Mon. session C

Institute for Nuclear Physics, University of Frankfurt

 $1/N_{\pi^0}$

10⁻⁷

O

Œ

0.2

C+C @ 2AGeV [1]

0.4

 M_{ee} [GeV/c²]

- Simulation **Pluto**
 - Thermal emission of particles
 - → No "bremsstrahlung"
- Model A: long-lived sources: π⁰, η, ω
- Model B: with shortlived resonances ρ,Δ
 - [1] G. Agakichiev et al, PRL 98, 052302 (2007)

0.8

0.6

2AGeV vs. 1AGeV

- 1 AGeV data ^[1] analyzed by same methods
- π⁰ region well under control
- Enhancement in η region
 - 6.8 at 1AGeV
 - (DLS: 6.5 at 1.04 AGeV)
 - 1.9 at 2AGeV

HADES vs DLS

- DLS data confirmed by HADES
- Conclusion: No "DLS" puzzle
- What else could explain the enhancement?

HADES "Scaling Law"

- Enhancement scales like π^0 production
- Pions are produced via (mainly Δ) resonances
- Additional radiation stems from resonances
- Would underline the role of "resonant matter"

pn + ∆ treatment

- Recent calculation ^[1] of NN bremsstrahlung + Δ
- Enhancement in the pn case

[1] Kaptari, Kämpfer, NPA 764 (2006) 338

Up-to date Transport^[1] for 1 AGeV

- Does larger pn Bremsstrahlung [2] explain
 - excess?

[1] HSD: E.L. Bratkovskaya and W. Cassing arXiv:0712.0635v1 and private communication
 [2] L.P. Kaptari and B. Kämpfer, Nucl.Phys. A 764 (2006) 338
 [3] DLS Data: R.J. Porter et al. Phys.Rev.Lett. 79 (1997) 1229

Needs verification in NN collisions!

Elementary collisions with HADES The "Low-Mass" Puzzle

Di-Leptons from pp/dp at 1.25(A)GeV

- Δ fixed by isospin (assuming π^0 via Δ only)
- pp case: below η threshold
- pn: η contribution est. by COSY/Saturne data

Ratio pp/pn

- OBE calculation from Kaptari is not sufficient
- Hint for additional offshell resonances?

see talk of T. Galatyuk, Mon C, 17:10

dd dielectron yield ratio pn /

C+C vs. pp/pn

- Elementary reactions
 (1.25GeV)
 - Compared to C+C data at 1 AGeV
- C+C data almost explained by pure NN interactions

Vector Meson Production with HADES (High-Mass Resolution)

Ar+KCI @ 1.756 AGeV

- Higher mass resolution
- Good statistics of pairs above 0.5 GeV
 - Large excess over Pluto cocktail in the mass region 0.15-0.6 GeV
 - ω peak

regime

 first time at SIS/ Bevalac energy

pp @ 3.5 GeV (Apr 07)

- ρ mass shape
 - Production mechanisms
 - Resonance model
- ω line shape
 - Reference to p+Nb done at the same energy
- Inclusive vector meson production
 - ω factor 2 lower then prediction ^[1]

[1] see: E.L. Bratkovskaya and W. Cassing P.Rpt. 308 (1999) 65

Outlook

p + Nb Experiment

- **Sep/Oct 2008**
- Exp. situation at normal nuclear density
 - Not conclusive
 - Verification needed
- Same target as CB/Taps (Nb)
- Same energy as HADES pp (3.5 GeV)
 - Model-independent extraction of modifications

HADES @ FAIR

- 2-40 GeV: terra incognita (>8AGeV covered by CBM)
- Transition from resonance matter to pionic environment

- HADES upgrade:
 - Forward wall
 - Data acquisition
 - High granularity RPC replaces Tofino
 RICH modification

Summary

- Di-Lepton spectroscopy with HADES
- Comprehensive program:
- Heavy ion reactions
 - C+C (low resolution) at 1/2AGeV
 - Ar+KCI (high resolution) at 1.756AGeV: ω clearly seen
- Elementary reactions
 - p+p and n+p at 1.25 GeV
 - Sufficient to describe C+C at 1AGeV
 - p+p at 3.5 GeV (ω mass shape)
- Outlook:
 - p+A at 3.5 GeV (vector meson modifications)
 - Heavier systems (Au+Au, Ni+Ni)

The Collaboration

- Bratislava (SAS, PI), Slovakia
- Catania (INFN LNS), Italy
- Cracow (Univ.), Poland
- Darmstadt (GSI), Germany
- Dresden (FZR), Germany
- Dubna (JINR), Russia
- Frankfurt (Univ.), Germany
- Giessen (Univ.), Germany
- Milano (INFN, Univ.), Italy
- Munich (TUM), Germany
- Moscow (ITEP,MEPhI,RAS), Russia
- Nicosia (Univ.), Cyprus
- Orsay (IPN), France
- Rez (CAS, NPI), Czech Rep.
- Sant. de Compostela (Univ.), Spain
- Valencia (Univ.), Spain
- Coimbra (Univ.), Portugal

Backup

High Density Phase

- Particle production at or below threshold
- ρ→e⁺e⁻ decay inside fireball
- Direct access to in-medium properties

Rare probes at bombarding energies of 1 – 2 AGeV !!!

Meson	Mass (MeV/c²)	Г (MeV/c²)	cτ (fm)	Main decay	e⁺e⁻ BR
ρ	768	152	1.3	$\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$	4.4 x 10 ⁻⁵
ω	782	8.43	23.4	$\pi^+\pi^-\pi^0$	7.2 x 10 ⁻⁵
φ	1019	4.43	44.4	K⁺ K⁻	3.1 x 10 ⁻⁴

Cocktail

- Consequence:long-lived particles
 - (π, η, ω) have no uncertainty
- Subtract "trivial" sources to get ρ mass shape

Vector Mesons in Medium

Hadrons

[1] T. Renk et al., PRC 66 (2002) 014902

- Expected to change properties in dense medium (e.g. mass, width)
- Vector mesons: controversial discussion
 - Brown/Rho scaling: Dropping mass of ω, ρ

Continuum

M [GeV/c²]

QMD+eVMD

I

HADES

 $\eta \rightarrow \gamma e^+ e^-$

 $\pi^0 \rightarrow \gamma e^+ e^-$

sum over N

sum over Δ

 $\Delta_{1232} \rightarrow N e^+ e^-$

0.8

0.8

M [GeV]

Institute for Nuclear Physics, University of Frankfurt

Excess above η :

$$F = \frac{Y_{tot}}{Y_{\eta}}$$

+C @ 1 AGeV
=6.8 ± 0.6 (stat) ± 1.3 (sys) ± 2.0 (\eta)
+C @ 2 AGeV
=1.9 ± 0.2 (stat) ± 0.3 (sys) ± 0.3 (\eta)
r+KCI @ 1.756 AGeV (prelim.)
=4.3 ± 0.2 (stat) ± 1.3 (sys) ± 1.0 (\eta)

С

F

C

F

A F

Thermal model

- Elementary collisions & *heavy ion reactions* in one tool → Pluto
- Thermal model: Particles produced with Boltzmann distribution $\frac{dN}{dE} \propto pEe^{\frac{-E}{T}}$ – Options: 2 temperatures, radial flow
- Anisotropic sampling
 - $\frac{dN}{d\Omega} \propto 1 + A_2 \cos^2 \theta_{cm} + A_4 \cos^2 \theta_{cm}$

 A_1, A_2, T_1, T_2 are free parameters

• Broad mesons & resonance $\frac{d^{2}N}{dEdM} \propto Bolzmann(E) * BreitWigner(M), E \ge M$ Mass sampling

Mass sampling of hadrons

- Spectral shape of collision products (e.g. N*1535): Breit Wigner $\frac{dN}{dM} \propto \frac{M^2 \Gamma_{tot}(M)}{(M^2 - M_0^2)^2 + M^2 \Gamma_{tot}^2(M)}$ Here, q, q₀ are fixed by m₁,m₂
 - Decay into stable hadrons N* \rightarrow p π

$$\Gamma_{M_{0}, m_{1}, m_{2}}(M) = \Gamma_{0} \frac{M_{0}}{M} \left(\frac{q}{q_{0}}\right)^{2l+1} \left(\frac{q_{p}^{2} + \delta^{2}}{q^{2} + \delta^{2}}\right), \Gamma_{tot} = \Sigma \Gamma_{i}$$

Unstable products: fold & integrate over m

$$\Gamma_{i} = \int_{m_{min}}^{m-m_{2}} \frac{dN}{dM} p_{cm}(m, m_{1}, m_{2}) \Gamma_{m_{2}}(m, m_{1})$$

I. Fröhlich for the HADES collaboration – Meson 2008 – 6.6.

consequences: •have to take all BRs into account •recursive width calculation

HADES @ FAIR

- HADES upgrade:
- Forward wall for spectators (done)
- Data acquisition (ongoing)
- High granularity RPC replaces
 Tofino (ongoing)
- RICH modification to compensate boost

