Quasi-free photoproduction of η-meson off the neutron

Igal Jaeglé

for the CB - ELSA / TAPS collaboration

Basel Uni., CH Bochum Uni., DE Bonn Uni., DE Dresden Uni., DE

Erlangen Uni., DE Petersburg NPI Gatchina, RUS Giessen Uni., DE KVI Groningen, NL

Experimental setup

Results

Conclusions & Outlook

Nucleon structure

Nature and

properties of known resonances

broad overlapping resonances

 η isospin filter

couple strongly to the neutron

Introduction presonance vs. n resonance

Resonances coupling to η photoproduction

Involve less than 12 resonances $D_{13}(1520)$ $S_{11}(1535)$ $S_{11}(1650)$ $D_{15}(1675)$ couples strongly to the n $F_{15}(1680)$ couples strongly to the p $P_{11}(1710)$ $P_{13}(1720)$ ambiguity

 $D_{15}(2070)$ couples strongly to the ?

Introduction Prediction for the **n** photoproduction off the neutron

Role of $D_{15}(1675)$ couples strongly to the neutron. $b_{\eta} = 15\%$ (for eta-MAID) $b_{\eta} = 0.1\%$ (for PDG)

Combination of photoexcitation, interference of $S_{11}(1650)$ and $P_{11}(1710)$ and cusp effects

Introduction Possible evidence of N(1710)P₁₁ n photoproduction off the neutron at GRAAL

extracted width 50 MeV experimental resolution 40 MeV

evidence of a narrow resonance $\Gamma < 50$ MeV ?

non-strange member of the anti-decuplet ?

<u>No comparison</u> to the results obtained by the TAPS - MAMI collaboration and to the free proton data folded with Fermi motion

A narrow bump is observed on the <u>quasi-free neutron</u> differential cross section

ELSA : electron accelerator


```
0.3 \text{ GeV} \le E_v \le 2.6 \text{ GeV}
```

CB-ELSA / TAPS setup

Nucleon Identification CB

inner detector:

- 3 layers of scintillating fibers
- cylindrical shape

proton:

2 or 3 layers match a hit in the CB neutron:

no layer has fired

Nucleon Identification TAPS

taps veto detector:

- 5 mm plastic scintillator
- individual for each BaF₂ crystal

proton:

veto hit in front of BaF₂ crystal + E vs TOF

neutron:

```
no veto hit in front of BaF<sub>2</sub> crystal
+ E vs TOF
```


Results

Reaction identification $\gamma+n(p)\rightarrow\eta+n(p)$

- decay channel η→π°π°π°→6γ
 select events with 7 hits
 invariant mass of all photon pairs
 cut on π° mass
 select best combination of 6γ
- to $3\pi^{\circ}$ by χ^2 -test
- **use π° mass as constrain, construct 3π° invariant mass**
- missing mass analysis to remove ηπ final state; treat recoil nucleon as missing particle

$$\mathbf{m}^2 = (\mathbf{P}_{\mathbf{y}} + \mathbf{P}_{\mathbf{N}} - \mathbf{P}_{\mathbf{\eta}})^2$$

E : p.s. MC simulation in quasi-free kinematics taking into account

the Fermi motion of the nucleons derived from the deuteron wave function

$\boldsymbol{\eta}$ photoproduction off the deuteron

 $\gamma n \rightarrow \eta n$ measured in 2 different ways :

 \mathbf{r} **\mathbf{\eta}** in coincidence with the recoil neutron

difference of inclusive cross section and in coincidence with the recoil proton

Angular distributions

Results

Compared to ETA-MAID

Results

Angular distributions fit

Fit with

$$\frac{d\sigma}{d\Omega} = \sum_{I=0}^{3} A_{I} P_{I}^{0} (\cos(\theta_{cm}))$$

Result

 all coefficient similar for proton and neutron above 1.5 GeV
 A_o coefficient
 S₁₁ dominance for neutron small

shoulder around 1 GeV

 A_1 coefficient

at low energies interference between S_{11} - P_{11} / P_{13} resonances ? A_2 coefficient

interference between S₁₁-D₁₃

resonances

Comparison to Models

BnGa solution 1a: narrow P₁₁
 BnGa solution 1b: normal P₁₁

BnGa solution 2: constructive interference between the two S₁₁ and cusp effects
 BnGa solution 3: destructive interference between the two S₁₁ and D₁₃(1720)
 eta-MAID: D₁₅(1675) is ruled out by GRAAL Σ asymmetry measurement
 Giessen model: S₁₁(1650) and/or P₁₁(1710) and cusp effects

Results

De-folding the fermi motion

Find the true total cm energy from

$$W_{R} = \sqrt{(E_{\eta} + E_{N})^{2} - (p_{\eta} + p_{N})^{2}}$$

instead of

$$W_B = \sqrt{2E_\gamma m_N + m_N^2}$$

Possible when the recoil nucleon is going into the TAPS forward wall, use of the time-of-flight $(\cos (\theta_{cm}) < -0.1)$

Result
 de-folded proton cross section
 similar to free proton
 de-folded neutron cross section
 shows narrow structure around 1 GeV

$W = 1684 \text{ MeV} \pm 2 \text{ MeV}$ $\Gamma = 60 \text{ MeV} \pm 10 \text{ MeV}$ exp. resolution 60 MeV

Conclusions

η photoproduction off the deuteron have been analyzed and different observables have been extracted
 previous measurements are reproduced
 quasi-free proton and free proton folded agree within ± 10 %
 the two neutron measurements agree within ± 10 %

γ,η
 a possible narrow resonance is observed at W = 1684 MeV
 a possible new resonance is observed at W = 2080 MeV
 analysis of the measurements under process

published in Phys. Rev. Let.

Outlook

η photoproduction off the deuteron with high statistics and double polarization measurements

Crystal Ball and TAPS at Mami: high statistics and E E_e=1.5 GeV, beam intensity 20 nA

10 cm

Crystal Barrel and TAPS at ELSA:
 Σ and G
 E_e=3.5 GeV, beam intensity 5 nA

X(1684) \rightarrow **n**, how narrow could it be ?

Crystal Ball and TAPS at Mami (taken in 12/2007)

> estimated exp. resolution 30 MeV- 40 MeV

Experimental resolution dominated by the ΔTOF improved by moving away the detectors

Thanks for your attention

This work was supported by the Swiss National Fund and DFG(TR-16)

Impulse approximation

calculation made with a nucleon at rest

with a deuterium target there are "nuclear effects"
 Fermi motion
 final state interaction negligible
 two-nucleon production contributions negligible

Impulse approximation or spectator – participant approach takes into account the momentum distributions of the bound particles

