Charmed meson reconstruction with the PANDA detector

René Jäkel

(for the PANDA collaboration) Institut für Kern- und Teilchenphysik, TU Dresden

Meson 2008, 07.06.2008

Outline

1 Motivation

Physics motivation Detector setup

2 Reconstruction of charmed mesons

 $D\bar{D}$ benchmark channels Background sources for $D\bar{D}$ channels Results Background suppression

3 Summary

Overview

Motivation

Physics motivation Detector setup

2 Reconstruction of charmed mesons

 $D\bar{D}$ benchmark channels Background sources for $D\bar{D}$ channels Results Background suppression

3 Summary

Physics motivation

Rich physics program: a selective list

• . . .

. . .

- charmonium above DD
 thresholds
- search for charmed hybrids
- open charm spectroscopy
- charm in medium, modifications of basic properties (mass, width)?
- investigation of rare decays and CP violation in D meson sector

 \rightarrow plenary talk on Monday:

S.Lange "PANDA - Hadron Physics with Antiprotons at FAIR"

René Jäkel

HESR - a storage and cooler ring

- 5×10^{10} antiprotons; beam momentum range of $p_{beam,\bar{p}} = 1.5 \dots 15 GeV/c$
- high luminosity and high resolution mode:
 - high lumi mode: $L = 10^{32} cm^{-2} s^{-1}$ with $\Delta p/p = 10^{-4}$
 - high reso mode: $L = 10^{31} cm^{-2} s^{-1}$ with $\Delta p/p = 3 \times 10^{-5}$

PANDA - a combined solenoid and forward spectrometer

- excellent PID and track reconstruction abilities
- good solid angle coverage (nearly 4π)
- high interaction rate and untriggered readout (continuous beam),
 - $1-2\times 10^7~\text{interactions/s}$

Overview

Motivation

Physics motivation Detector setup

2 Reconstruction of charmed mesons

 $D\bar{D}$ benchmark channels Background sources for $D\bar{D}$ channels Results Background suppression

3 Summary

List of basic benchmark channels

Large scale simulation study

$ar{p}p ightarrow D^+D^-$

- only charged decay considered $D^+ \rightarrow K^- \pi^+ \pi^+ (+cc)$
- production at $\sqrt{s} = 3.77 \, GeV$, $p_{beam} = 6.57 \, GeV/c$

$ar{p}p ightarrow D^{*+}D^{*-}$

- $D^{*+}
 ightarrow D^0 \pi^+$, $D^0
 ightarrow K^- \pi^+$
- production at $\sqrt{s} = 4.04 GeV$, $p_{beam} = 7.70 GeV/c$
- slow pion from $D^{*\pm}$ decay

René Jäkel

Selection criteria

common selection criteria for both channels

- · loose mass window cut before vertex fitting
 - D^+D^- : $m_D = 1.7...2.1 \, GeV/c^2$
 - $D^{*+}D^{*-}$: $m_{D^*} = 1.8...2.3 \text{ GeV}/c^2$
- minimum 6 charged tracks
- constraints: decay particles have to form a common vertex
- kinematic fit to constrain beam energy and momentum (c.l.> $5\times 10^{-2})$
- K/π selection (LH >= 0.3), different PID cuts can be used to reject background
- additional constraint on D meson momentum

Estimation of $\overline{D}D$ cross sections

- $\sigma(\bar{p}p \rightarrow \bar{D}D)$ unknown
- cross section of a resonance via Breit-Wigner

$$\sigma_R(s) = \frac{4\pi\hbar^2 c^2}{s - 2m_p^2 c^4} \frac{B_{in}B_{out}}{1 + \left(2(\sqrt{s} - M_R c^2)/\Gamma_R\right)^2}$$

- e.g. $\sigma(\bar{p}p \rightarrow \Psi(3770) \rightarrow D^+D^-) \approx 3.25 nb$
- worst case: cross section for direct production of DD pair assumed to be in the same order of magnitude at the resonant position, close to threshold (no data yet)

• total cross section at
$$p_{beam} = 6.5 \ GeV/c$$
:
 $\sigma(\bar{p}p \rightarrow X) = 60 mb$

channel	D^+D^-	$D^{*+}D^{*-}$
decay	$D^{\pm} \rightarrow K^{\mp} \pi^{\pm} \pi^{\pm}$	$D^{*+} \rightarrow D^0 \pi^+$ (67.7 %)
	(9.2%)	$D^0 ightarrow K^- \pi^+$ (3.8 %)
rel. branching	$5 imes 10^{-10}$	$1 imes 10^{-11}$

René Jäkel

Background sources for *DD* channels

some data from the 70's and early 80's for possible background reactions

René Jäkel

(for the PANDA collaboration)Institut für Kern- und Teilchenphysik, TU Dresden

Charmed meson reconstruction with the PANDA detector

- assumption: signal suppressed by $10^{10} 10^{11}$
- general background
 - DPM (dual parton model) describes *pp* annihilation processes
 - test for apparative effects
 - tested down to level of 10⁻⁷
- specific background reactions

•
$$\frac{\sigma(\bar{p}p \to 3\pi^+ 3\pi^- \pi^0)}{\sigma(\bar{p}p \to X)} \approx 2.5 \times 10^{-2}$$

•
$$\frac{\sigma(\bar{p}p \to 3\pi^+ 3\pi^-)}{\sigma(\bar{p}p \to X)} \approx 5 \times 10^{-3}$$

•
$$\frac{\sigma(\bar{p}p \to 2K^\mp 4\pi^\pm)}{\sigma(\bar{p}p \to X)} \approx 5 \times 10^{-4}$$

•
$$\bar{p}p \rightarrow 2K^{\mp}4\pi^{\pm}$$
: 10×10^{6}

Results

Signal efficiency

- efficiency $\epsilon = 40\%$
- kinematic fit (4C) improves resolution by \approx 50% (red curve)

$$m_D - m_{gen} = 0.5 \times 10^{-4} MeV/c^2$$

René Jäkel

000000000000

$\overline{\Bar{p} ho} ightarrow D^{*+}D^{*-}$, $D^{*\pm} ightarrow D^0 \pi^{\pm}$

- efficiency $\epsilon = 27\%$
- 4C-fit improves resolution by \approx 50% (red curve)
- Iower left: 5C-fit:

 $m_{D^0} = m_{D^0,PDG}$

René Jäkel

Background suppression

Suppression of non strange background

$3\pi^+3\pi^-$, $3\pi^+3\pi^-\pi^0$

- distribution of K, π momenta from D decay in range from hundreds of MeV/c to few GeV/c
- using dE/dx information from the tracking system for low momentum tracks
- DIRC information for higher momentum particles
- kinematics very restrictive
- require higher K probability rejects remaining background
- \rightarrow good PID neccessary to reject non strange background

	signal efficency [%]		S/N	
LH cut	D^+D^-	$D^{*+}D^{*-}$	DD	
0.2	39.9	27.4	1:5	
0.3	25.4	14.3	1:1 (or better)	
preliminary				

preliminary

René Jäkel

Background suppression

$2K^{\mp}4\pi^{\pm}$ background

D^+D^-

- constraining allowed momentum region for D[±] candidate
- cut on D^{\pm} momentum rejects over 90% of the $2K^{\mp}4\pi^{\pm}$ background
- additional cut on Δz of D[±] decay vertex

Δz cut [μm]	S/N
200	1:160
400	1:20
600	1:2
preliminary	

René Jäkel

Background suppression

D^+D^-

- constraining allowed momentum region for D[±] candidate
- cut on D^{\pm} momentum rejects over 90% of the $2K^{\mp}4\pi^{\pm}$ background
- additional cut on Δz of D[±] decay vertex

Δz cut [μm]	S/N
200	1:160
400	1:20
600	1:2
preliminary	

René Jäkel

$2K^{\mp}4\pi^{\pm}$ background

$D^{*+}D^{*-}$ channel

- better background suppression due to kinematics
 - additional vertex constraint from D⁰ decay
 - slow pion from the $D^{*\pm}$ decay
- without D^0 mass constraint in $D^{*\pm}$ fit: background suppression worse
- no additional explicit vertex cut used

D ⁰ mass	signal efficiency [%]	S/N
no mass constraint	27.4	1:200
$M_{PDG}(D^0)$	24.9	pprox 1:1 (or better)

René Jäkel

(for the PANDA collaboration)Institut für Kern- und Teilchenphysik, TU Dresden

Charmed meson reconstruction with the PANDA detector

Overview

Motivation

Physics motivation Detector setup

2 Reconstruction of charmed mesons

 $D\bar{D}$ benchmark channels Background sources for $D\bar{D}$ channels Results Background suppression

3 Summary

Conclusions

- proposed detector setup shows good performance to reconstruct charmed mesons
- good signal reconstruction, using kinematic fitting
- excellent suppression of multi pion background using PID informations ($\approx 10^8)$
- sufficient suppression of strange background $(\approx 10^5)$ using extended target region

Conclusions

- proposed detector setup shows good performance to reconstruct charmed mesons
- good signal reconstruction, using kinematic fitting
- excellent suppression of multi pion background using PID informations ($\approx 10^8)$
- sufficient suppression of strange background $(\approx 10^5)$ using extended target region

PANDA will facilitate precision study of many physics aspects in the charmed region using $\bar{p}p$ interactions