

Meson 2008 Conference, Cracow

Hadron Physics at COSY

Alfons Khoukaz

Institut für Kernphysik, WWU Münster, Germany

Physics Case

Hadron-hadron interaction

- Nucleon-nucleon
- Meson-nucleon and Meson-nucleus
- Meson-meson
- Structure of particles
 - ■a₀/f₀, Λ(1405)
 - exotics, penta-quarks
- Meson/hyperon production processes
- Symmetries and symmetry breaking

COSY Accelerator

Energy range

0.045 – 2.8 GeV (p) 0.023 – 2.3 GeV (d) (momentum 3.7 GeV/c)

Cooling

2 methods: electron, stochastic

Polarization p, d beams & targets

Beams

internal, extracted

Experiments, detectors ANKE, TOF, WASA, ...

COSY (Cooler Synchrotron) at Jülich (Germany)

COSY Beam Parameters

Beam quality:

without cooling: $\Delta p/p \sim 2 \cdot 10^{-4}$ electron cooling: $\Delta p/p \leq 5 \cdot 10^{-5}$ stochastic cooling: $\Delta p/p \leq 5 \cdot 10^{-5}$

 $\varepsilon = \pi$ mm mrad

```
p<sub>p</sub><0.6 GeV/c
p<sub>p</sub>>1.5 GeV/c
1mmØ<sup>•</sup>0,18°
```

Beam intensities:

protons, unpolarized:
protons, polarized:
deuterons, unpolarized:
deuterons, polarized:

1.10¹⁰ (cooled) 2.10⁹ (cooled) 5.10¹⁰ (cooled) 3.10⁹ (cooled)

COSY Beam Parameters

Extracted beam 10⁵ ... 10⁹ protons/s in spill slow extraction: 10 s ... > 10 min spill 10(5) s inter-spill (un)cooled 2.10⁹ protons in 200 ns fast extraction: every 15 s quasi-DC beam polarized beam: deuterons and protons

COSY Beam Parameters

beam size decrease during acceleration (adiabatic shrinkage)

effect of stochastic cooling

COSY Accelerator

Absolute beam momentum determination

- "conventionally":
- Spin-resonance method:

Current Experiments at COSY

Schematic overview COSY Facility (FZ-Jülich)

Experiments: TOF

Experiments: WASA-at-COSY

Central Detector

d Detector

Meson Production at COSY

Max. COSY beam momentum: 3.7 GeV/c allows for production of
 pseudoscalar mesons (π, K, η, η')
 vector mesons (ω, ρ^{±,0}, Φ)
 scalar mesons (a₀, f₀)

Charge Exchange Breakup (CEB)

- Reaction: $\vec{d} + \vec{p} \rightarrow (pp)_{s-wave} + n$ CEB
- Precision data for low excitation energies: $\rightarrow {}^{1}S_{0}(pp)$
- Determination of analysing powers

Information about spin-dependent chargeexchange amplitude np → pn

 $f_{np} = \alpha + i\gamma(\sigma_n + \sigma_p)n + \beta(\sigma_n \cdot n)(\sigma_p \cdot n) + \delta(\sigma_n \cdot m)(\sigma_p \cdot m) + \varepsilon(\sigma_n \cdot l)(\sigma_n \cdot l)$

Charge Exchange Breakup (CEB)

- Reaction: \vec{d} +p \rightarrow (pp)_{s-wave}+n
- Precision data for low excitation energies:

CEB

Charge Exchange Breakup (CEB)

Double-spin experiments in preparation

Vector Meson Production

Reactions:

pp \rightarrow pp ∞ , ω identification via missing mass pp \rightarrow pp Φ , Φ identification via invariant mass of decay products (K⁺K⁻)

- Determination of total and differential cross sections
- Investigation of OZI-rule violation

$$\Re_{\Phi/\omega} = \frac{\sigma_{pp \to pp\Phi}}{\sigma_{pp \to pp\omega}} = c \times \tan^2 \left(\Delta \mathcal{G}_V = 3.7^\circ \right) = c \times 4.2 \cdot 10^{-3} = c \times \Re_{OZI}$$

Vector Meson Production: pp→ppV

Observation of s-wave-dominance SPESIII TOF 10² DISTO close to threshold Indications for 10 $pp \rightarrow pp\omega$ similar production $pp \rightarrow pp\phi$ processes ($d\sigma/d\Omega$) $\mathsf{R}_{\Phi/\omega}$ ~ $7 \cdot K_{071}$ ANKE 10⁻¹ DISTO \star at Q = 93 MeVpp→ppω at COSY-TOF 10^{3} 10² 10 ∈ [MeV] see talk: W. Ullrich PRL 96 (2006) 242301 PL B 647 (2007) 351 EPJ A 31 (2007) 95

Meson Pair-Production: $pp \rightarrow ppK^+K^-$

Production of non-strange meson?

- \rightarrow test of OZI rule in NN
- ■ $a_0/f_0(980)$ → molecular state

 $\Phi(1020)$

D

Meson Pair-Production: K⁺K⁻

Precision data on kaon pair production
 Investigation of final state interactions
 Indications for production processes

pp

PRL 96 (2006) 242301 PRL 97 (2006) 142301 PL B 635 (2006) 23

Meson Pair-Production: K⁺K⁻

Quantitative description:

strong (K⁻p) FSI: |a| ~ 1.5 fm no K⁺p FSI

Hyperons: pp \rightarrow pK⁺Y, Y = Λ , Σ^+ , Σ^0

Investigation of relevant production mechanism

sections not sufficient

Hyperon Production: $pp \rightarrow pK^+\Lambda$

High statistics Dalitz plot at 3.06 GeV/c 320.000 pK⁺Λ

- Indication for cusp effect
- Data indicate
 Contributions from
 nucleon resonances and pΛ FSI

Hyperon Production: $pp \rightarrow pK^+\Lambda$

Indications for contributions from: $N^{*}(1650)$ $d^{2}\sigma = (dw) \left\| \sum_{i} (C_{i} + A_{i}) + C_{i} + A_{i} \right\|_{1}^{2}$ $N^{*}(1710)$

$$\frac{d^2\sigma}{dm_{K\Lambda}^2 dm_{p\Lambda}^2} = (flux) \cdot \left| \left(\sum_{R} (C_R \cdot A_R) + C_N \cdot A_N \right) \cdot (1 + C_{FSI} \cdot A_{FSI}) \right|^2$$

m²(pA)[GeV²/c⁴]

Hyperon Production: $\Lambda(1405)$

Pentaquarks: $\Theta^+(1540)$

■ Reactions: $pp \rightarrow (pK^0)\Sigma^+$ and $pp \rightarrow (pK^0)\pi^+\Lambda$

η –³He Interaction Studies

- Indications for a quasi-bound η-³He state at SATURNE (pd) and MAMI (γ³He)
 - → Precision measurements on total and differential cross sections

η –³He Interaction Studies

Steep rise of σ_{tot}
 indicates a
 strong η-³He FSI

- Angular asymmetry α >0 for p_{η}>40 MeV/c
- Strong variation of phase and magnitude of s-wave amplitude with p_n
 - \rightarrow quasi-bound state?

• further measurements: $dp \rightarrow {}^{3}He r$

η -Meson Mass

New possibility at COSY: η-meson mass

PLB 619 (2005) 281

Meson Decay Studies: WASA-at-COSY

Decays of the η-meson:

- strong decays forbidden in lowest order
- first order electromagnetic decays also forbidden
- → rare and very rare decays test fundamental symmetries

$$\begin{array}{c} \eta \not\rightarrow 4\pi^{0} \\ \eta \not\rightarrow \pi^{+}\pi^{-}e^{+}e^{-} \end{array} \end{array} \begin{array}{c} \text{CP-Tests} \\ \eta \not\rightarrow \pi^{0}e^{+}e^{-} \\ \eta \not\rightarrow 3\pi^{0}\gamma \end{array} \end{array}$$

η-Meson Decay Studies

WASA-at-COSY

Commissioning run in April 2007
 Reaction: pp \rightarrow pp $\eta \rightarrow$ pp $(3\pi^0) \rightarrow$ pp (6γ) > 10⁵ $\eta \rightarrow 3\pi^0$ events recorded

η-Meson Decay Studies

 Mesurement of the slope parameter α is a sensitive test of QCD predictions

$$x = \frac{1}{\sqrt{3}} \left(T_{\pi_1} - T_{\pi_2} \right)$$

$$y = \left(\frac{1}{3} \sum T_{\pi_i} \right) - T_{\pi_3}$$

$$z = \frac{6}{\left(m_{\eta} - 3m_{\pi^0} \right)^2} \cdot \sum_{i=1}^3 \left(E_{\pi_i} - \frac{m_{\eta}}{3} \right)^2 = \frac{r^2}{r_{\text{max}}^2}$$

WASA-at-COSY Program

\$\eta(\beta)\$-decays and meson production
 Pion-Pair production: ABC-Effect see talk: M. Bashkanov
 Isospin violation in dd \$\rightarrow \alpha \pi^0\$

$$P_{\rm CS}: \, \mathrm{dd} \to \alpha \pi^0 \quad \Rightarrow \quad \mathrm{dd} \to \alpha \left(-\pi^0 \right)$$

violates isospin conservation

violates charge symmetry

investigation of p-wave contribution

■ first successful measurements on dd \rightarrow ³He+n+ π ⁰ \rightarrow study of ISI(dd) and background

Summary

- COSY is an excellent machine to study hadron physics with hadronic probes
 High precision + spin
- Complementary detector facilities at COSY allow to investigate a broad and exciting field of physics:
- Hadrons
- Interactions
- Spectroscopy

SymmetriesSpin