Symmetry Breaking	Hadrons	Nature of Resonances	Chiral Restoration	Summary and Outlook

Chiral Partners in a Chirally Broken World

Stefan Leupold¹ Markus Wagner²

¹Goethe-Universität Frankfurt

²Justus-Liebig-Universität Giessen

Meson2008, Cracow, June 2008

Symmetry Breaking	Hadrons	Nature of Resonances	Chiral Restoration	Summary and Outlook
Table of Cor				

- Chiral Symmetry Breaking
- 2 Chiral Partners at the Level of Hadrons ρ and a_1
- Different Nature of Hadronic Chiral Partners
- 4 **Outlook to Chiral Restoration**

How do we know that chiral symmetry is broken?

- isospin symmetry SU_V(2): existence of multiplets,
 i.e. degenerate states (p, n), (ρ⁺, ρ⁰, ρ[−]), ...
- \rightsquigarrow same spectra: ρ^0 (from e⁺e⁻) and ρ^- (from τ^- decay)

$$j_V^\mu = rac{1}{2} (ar u \gamma^\mu u - ar d \gamma^\mu d) \qquad o \qquad ar u \gamma^\mu d$$

• corresponding $SU_A(2)$ symmetry:

$$j^{\mu}_{V} \rightarrow j^{\mu}_{A}$$

with axial-vector current $\vec{j}^{\mu}_{A} = \bar{q} \, \vec{\tau} \gamma_5 \gamma^{\mu} q$

- consequence of chirally symmetric world would be: same spectral information in vector and axial-vector current-current correlators (degeneracy)
- observable? $\rightsquigarrow \tau$ decay

Symmetry Breaking	Hadrons	Nature of Resonances	Chiral Restoration	Summary and Outlook
000				

Chiral symmetry breaking and τ decays

study decay $\tau \rightarrow \nu_{\tau} + hadrons$:

- couples to V A (weak process)
- G parity: V/A couples to even/odd number of pions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• are V and A spectra identical?

Chiral symmetry breaking and τ decays

study decay $\tau \rightarrow \nu_{\tau}$ +hadrons:

- couples to V A (weak process)
- G parity: V/A couples to even/odd number of pions
- are V and A spectra identical?
- → Phys. Rept. 421, 191 (2005) (ALEPH):

Symmetry Breaking	Hadrons	Nature of Resonances	Chiral Restoration	Summary and Outlook
000				

One of the clearest signs of chiral symmetry breaking

 $v_1: \tau \to \nu_\tau + m\pi$ (*m* even) $a_1: \tau \to \nu_\tau + n\pi$ (*n* odd)

▲□▶▲圖▶▲≣▶▲≣▶ 差 のQ@

Symmetry Breaking	g	Hadrons ●○○	Nature of Resonances	Chiral Restoration	Summary and Outlook

Energetically degenerate states

- consider single-particle state h, e.g. N
- chiral rotation U takes it to opposite parity, but (approximately) same energy:

$$\ket{h}
ightarrow U \ket{h} \sim \ket{\pi(0) h} + \dots$$

with soft pion $\pi(0)$

- → single-particle state connected to many-particle state
 - even more: chiral symmetry breaking fixes low-energy interaction (s-wave) between h and π(p)
- \sim Weinberg-Tomozawa (WT) interaction $\sim o(p)/F_{\pi}^2$
 - if WT attractive in channel reached by $U |h\rangle$
- → resonant structure possible in scattering of $h + \pi$

Symmetry Breaking	Hadrons	Nature of Resonances	Chiral Restoration	Summary and Outlook
	000			

Chiral partners at the level of hadrons?

- on the one hand:
 - *ρ*-meson in vector channel
 - a1-meson in axial-vector channel
- \rightsquigarrow call ρ and a_1 chiral partners?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ●

Symmetry Breaking	Hadrons	Nature of Resonances	Chiral Restoration	Summary and Outlook
	000			

Chiral partners at the level of hadrons?

on the one hand:

- *ρ*-meson in vector channel
- a1-meson in axial-vector channel
- \rightarrow call ρ and a_1 chiral partners?
- on the other hand:

 ρ-meson and (*ρ* + soft *π*) are (approximately) degenerate in energy

 \rightarrow call ρ and ρ - π correlation chiral partners?

Symmetry Breaking	Hadrons	Nature of Resonances	Chiral Restoration	Summary and Outlook
	000			

Chiral partners at the level of hadrons?

- on the one hand:
 - ρ-meson in vector channel
 - a1-meson in axial-vector channel
- \rightarrow call ρ and a_1 chiral partners?
- on the other hand:

 ρ-meson and (*ρ* + soft *π*) are (approximately) degenerate in energy

- \rightsquigarrow call ρ and ρ - π correlation chiral partners?
- \hookrightarrow will show in the following: **a**₁ is ρ - π "molecule"
- \hookrightarrow more general: study nature of ρ and a_1

Symmetry Breaking	Hadrons	Nature of Resonances	Chiral Restoration	Summary and Outlook
		000000000		

Nature of resonances I: ρ -meson

- experimental finding: isovector-vector current couples to two pions
- pions are subject to final state interactions (rescattering)
- experimental finding: resonant structure at $\approx 770~MeV$
- → study two scenarios:
 - 1. only final state interaction between pions
 - 2. include in addition preformed resonance (quark-antiquark)
 - describe final state interactions via Bethe-Salpeter eq., kernel from lowest order chiral interaction

 → parameter free

Scenario 1: only final state interaction

parameters in scenario 1: renormalization points

for loop for transition from photon to hadrons

- \hookrightarrow renormalization point should be in reasonable range
 - for loop in Bethe-Salpeter equation (rescattering, final state interaction)

→ renormalization point fixed
 (cf. Lutz/Kolomeitsev, Nucl. Phys. A 730, 392 (2004);
 Hyodo/Jido/Hosaka, arXiv:0803.2550 [nucl-th])
 wrong choice introduces preformed state through backdoor

Symmetry E	Breaking	Hadro 000	ns	Nature of oo●oooo	Resonan	ces	Chiral Restoration	Summary and Outlook

Pion form factor in scenario 1

- resonance only for renormalization points in TeV range (same finding: Oller/Oset, Phys. Rev. D 60, 074023 (1999))
- no resonance for reasonable renormalization points

Symmetry Brea	king		Hadrons	Nature 000●C	of Resonar	ices	Chiral Restoration	Summary and Outlook
		~	-					

Scenario 2: in addition elementary resonance

 additional parameters: resonance parameters: mass and couplings to 2-π and γ*

・ロット (雪) (日) (日) (日)

Symmetry Breaking	Hadrons	Nature of Resonances	Chiral Restoration	Summary and Outlook
		0000000000		000000

Pion form factor in scenario 2

- excellent description
- no two-peak structure since pion contact interaction weak

・ コット (雪) (雪) (ヨ)

Symmetry Breaking	Hadrons	Nature of Resonances	Chiral Restoration	Summary and Outlook
		000000000		

Nature of resonances II: a_1 -meson

- experimental finding (Dalitz plots): isovector–axial-vector current couples to π-ρ
- π - ρ system subject to final state interactions (rescattering)
- experimental finding: resonant structure at \approx 1250 MeV
- → study two scenarios:
 - only final state interaction between π-ρ
 (cf. Lutz/Kolomeitsev, Nucl. Phys. A 730, 392 (2004); Roca/Oset/Singh, Phys. Rev. D 72, 014002 (2005))
 - 2. include in addition preformed resonance (quark-antiquark)
 - describe final state interactions via Bethe-Salpeter eq., kernel from lowest order chiral interaction (Weinberg-Tomozawa - WT)
 parameter free

Scenario 1: only final state interaction

parameters in scenario 1: renormalization points

• for loop for transition from W to hadrons

- \hookrightarrow renormalization point should be in reasonable range
 - for loop in Bethe-Salpeter equation (rescattering, final state interaction)

 → renormalization point fixed, wrong choice introduces preformed state through backdoor

Symmetry Breaking	Hadrons	Nature of Resonances	Chiral Restoration	Summary and Outlook
		00000000000		

au decay in scenario 1

- reasonable description with one free parameter
- → indicates that a_1 is ρ - π "molecule" (Markus Wagner and S.L., arXiv:0801.0814 [hep-ph])

(日) (圖) (E) (E) (E)

Symmetry Breaking	Hadrons 000	Nature of Resonances ooooooooeoo	Chiral Restoration	Summary and Outlook

Scenario 2: in addition elementary resonance

additional parameters:

resonance parameters: mass and couplings to ρ - π and W

(日)

Symmetry Breaking	Hadrons	Nature of Resonances	Chiral Restoration	Summary and Outlook
		00000000000		

au decay in scenario 2

- try to minimize WT, but still typically double peak structure
- only with unnatural fine tuning one gets one peak (Markus Wagner and S.L., arXiv:0801.0814 [hep-ph])

Symmetry Breaking	Hadrons	Nature of Resonances	Chiral Restoration	Summary and Outlook
		0000000000		

Different nature of hadronic chiral partners

vector channel:

- π - π final state interaction weak
- *ρ*-meson is dominantly preformed state (quark-antiquark)

axial-vector channel:

- π - ρ final state interaction strong
- a_1 -meson is dynamically generated (π - ρ molecule)

Symmetry Breaking	Hadrons	Nature of Resonances	Chiral Restoration	Summary and Outlook
			•0	

How does chiral restoration take place?

- typically spontaneous symmetry breaking lifted at some temperature/density (Ferro magnet: Curie temperature)
- → consequence at point of chiral restoration: same in-medium spectral information in vector and axial-vector channel
 - how does it look like? \rightarrow various (> 2) scenarios
- \hookrightarrow scenario 1 (degenerate states):
 - ρ-meson is still (dominantly) single-particle state
 - \rightarrow requires chiral partner which is also a single-particle state

- → very high mass in vacuum (since $\neq a_1$ -meson) → ??
- \hookrightarrow scenario 2 (melting):
 - *ρ*-meson dissolves already in hadronic matter (precursor of deconfi nement)
 - $\rightarrow a_1$ -meson should also dissolve
 - → testable in our approach

Symmetry Breaking	Hadrons 000	Nature of Resonances	Chiral Restoration ○●	Summary and Outlook

・ロット (雪) (日) (日)

Dissolution of the a_1 -meson?

- very simple model:
 - $\Gamma_{\rho} \rightarrow 200, 250 \, \text{MeV}$
 - no changes to pion
 - no momentum dep.
 - \hookrightarrow can be improved

- broader ρ -meson leads to broader a_1 -meson
- → no proof that melting scenario is correct, but at least consistent picture
- → problem of missing chiral partner (at single-particle level) solved by deconfinement

- コット (雪) (雪) (日)

Symmetry Breaking	Hadrons 000	Nature of Resonances	Chiral Restoration	Summary and Outlook
Summary				

Hadronic chiral partners ρ and a_1 have different nature:

- vector channel:
 - π - π fi nal state interaction weak
 - *ρ*-meson is dominantly preformed state (quark-antiquark)
- axial-vector channel:
 - π - ρ fi nal state interaction strong
 - a_1 -meson is dynamically generated (π - ρ molecule)

chiral restoration (only oversimplified calculation so far):

- a_1 -meson dissolves together with ρ -meson
- \hookrightarrow precursor of deconfinement
- problem of missing chiral partner (at single-particle level) solved by deconfinement

Symmetry Breaking	Hadrons 000	Nature of Resonances	Chiral Restoration	Summary and Outlook o●oooo
Further rer	narks			

- other channels reached by chiral trafos acting on h:
 - $h = \pi$: channel of σ
 - h = N: channel of $N^*(1535)$
 - $h = \Delta(1232)$: channels of $N^*(1520)$, $\Delta^*(1700)$
- WT also attractive in these channels ... (Lutz/Kolomeitsev, PLB 585 (2004) 243)
- WT is flavor changing interaction
- resonant states formed by coupled-channel dynamics

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

- in general strangeness important (not much for *a*₁)
- \rightsquigarrow SU(3) coupled-channel dynamics

Symmetry Breaking	Hadrons	Nature of Resonances	Chiral Restoration	Summary and Outlook
				000000

tau decay into three pions - processes

couplings fixed in lowest order by $\chi {\rm SB}$

couplings fixed in lowest order from ρ decays and $\chi {\rm SB}$

backscattering fixed in lowest order by χ SB (WT)

one free parameter: regulator of loop $\hat{=}$ counter term from vertex $W \rho \pi$ (higher order term)

tau decay into three pions — processes II

alternative scenario: include in addition

・ロット (雪) (日) (日)

at least three additional parameters: mass of a_1 , coupling $W a_1$, coupling $a_1 \rho \pi$

◆ロ▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Symmetry Breaking	Hadrons 000	Nature of Resonances	Chiral Restoration	Summary and Outlook

tau decay - only tree level

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ = → の < @