

中國科學院為能物況研究所 Institute of High Energy Physics Chinese Academy of Sciences

Recent results from BESII J/ ψ decay

Xiaoling Li <u>xlli@ihep.ac.cn</u> (Representing BES Collaboration) <u>MESON 2008</u> June 7, 2008, Cracow, Poland

Multi-quark State, Glueball and Hybrid

*** Hadrons consist of 2 or 3 quarks :**

> Naive Quark Model :

中国科学院高能物理研究所

*** New forms of hadrons:**

- Multi-quark states : Number of quarks >= 4
- Hybrids : qqg, qqqg ...
- ➤ Glueballs : gg, ggg ...

How quarks/gluons form a hadron is far from being well understood.

Multi-quark states, glueballs and hybrids have been searched experimentally for a very long time, but none of them is established.

However, the effort has never been stopped, especially, during the past three years, a lot of surprising experimental evidences showed the existence of hadrons that cannot (easily) be explained in the conventional quark model.

 J/ψ decays provide ideal Lab for searching the new forms of hadrons and studying the light hadron spectroscopy.

Outline

***** New results in the following decay channels

♦The analysis of $J/\psi \rightarrow \omega$ p pbar

•PWA of J/ ψ \rightarrow π^{0} **p pbar**

中国科学院高能物理研究所

♦KΛ mass threshold structure N_X(1610) in J/ψ → pK⁻Λ

Summary

Side view of the BES detector

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

Study of $J/\psi \rightarrow \omega$ p pbar at BESII

中国科学院高能物理研究所 Motivation

A narrow enhancement is observed near ppbar threshold in J/ ψ → γppbar. An S-wave fit yields:

> Mass: M=1859⁺³ +5 MeV/c² -10 -25 Width: Γ < 30 MeV/c² (90% CL)

Some people suggest that the enhancement is primarily due to the final state interaction (FSI) between the produced proton and antiproton.

\% Investigate whether the enhancement exists near ppbar threshold in J/ ψ → ωppbar

Event selection $J/\psi \rightarrow \omega p \overline{p}$

For final states γγπ⁺π⁻**p** p • 4 good charged tracks Events/ (0.005 GeV/c²) 12005 TeV/c²) 2 good gammas PID, requiring 2 pions an 2 protons For 4-constraint kinematic fit 1000 • $\chi^2(\gamma\gamma\pi^+\pi^-p \ \overline{p}) < 20$ 500 Require good pi⁰ signal • $|M(\gamma\gamma) - m_{\pi}^{0}| < 0.04 \text{ GeV/c}^{2}$

ω signal

中国科学院高能物理研究所

Study of $J/\psi \rightarrow \omega$ p pbar at BESII

No obvious N* in Dalitz plot.

***We measured:**

BR(J/ $\psi \rightarrow p\overline{p}\omega) =$ (1.00±0.03±0.18)×10⁻³ PDG value:(1.3±0.25)×10⁻³

Study the M(p \bar{p}) in J/ $\psi \rightarrow \omega p \bar{p}$

中国科学院高能物理研究所

$$f(\delta) = N(\delta^{1/2} + a_1 \delta^{3/2} + a_2 \delta^{5/2})\delta = M(p\bar{p} - 2m_p)$$

it is used to discribe the contribution of back-ground and non-resonance $\omega {\bf p} \overline{p}$ events

Upper limit of $J/\psi \rightarrow \omega X(1860) \rightarrow \omega p p$

$$p(\theta|x) = \frac{\mathcal{L}(x|\theta)\pi(\theta)}{\int \mathcal{L}(x|\theta')\pi(\theta')d\theta'}$$

Table 2: Systematic error sources and their contributions

	${\rm Br}(J/\psi\to\omega p\bar{p})$	Upper Limit
Tracking efficiency	8	8
Photon efficiency	4	4
Particle ID	6	6
Kinematic fit	5	5
Background uncertainty	5	7
Hadronic model	4.8	11.4
Monte Carlo generator	-	8.5
Intermediate decays	0.8	0.8
Total J/ψ events	4.7	4.7
Total systematic error	14.6	20.4

$$\pi(s) = \begin{cases} 0 & s < 0\\ 1 & s \ge 0 \end{cases}$$

$$1 - \alpha = \int_{-\infty}^{s_{up}} p(s|n)ds = \frac{\int_{-\infty}^{s_{up}} \mathcal{L}(n|s)\pi}{\int_{-\infty}^{\infty} \mathcal{L}(n|s)\pi}$$

中国科学院高能物理研究所

Summary for $J/\psi \rightarrow \omega p$ p

 * There is no obvious N* resonance in the Dalitz plot in J/ $\psi \rightarrow \omega p \bar{p}$ chennal

The branching ratio of J/ψ→ωp \overline{p} is measured **Br**(J/ψ→ωp \overline{p})=(1.00 ± 0.03 ± 0.18)* 10⁻³

★ There is no obvious enhancement in M(p p) threshold, and that means X(1860) in J/ψ→γ p p is not from pure FSI. At the same time, the upper limit is measured at 95% C.L.

▶ Br(J/ $\psi \rightarrow \omega$ X(1860))* Br(X(1860) \rightarrow p p))<1.5*10⁻⁵

> 中国科学院高能物理研究所 N* in J/ ψ → pp π^0

15

N(1440), N(1520), N(1535), N(1650), N(1675), N(1680), N(1710) are needed.

Nx(2065) exists in this channel (stat. sig. >>5σ)
The spin-parity favors 3/2+

中国科学院高能物理研究所

 $M = 2040^{+3}_{-4} \pm 25 \text{ MeV}, \ \Gamma = 230 \pm 8 \pm 52 \text{ MeV}$

N*	M(MeV/c ²)	Elherdic	JP	fraction(%)	Br (×10 ⁻⁴)
N(1440)	1455 ⁺²	$315^{+5}_{-6} \pm 67$	1/2+	9.74~25.93	1.33~3.54
N(1520)	$1513^{+3}_{-4} \pm 13$	$127^{+7}_{-8}\pm37$	3/2-	2.38~10.92	0.34~1.54
N(1535)	$1537^{+2}_{-6}\pm12$	$135^{+8}_{-8} \pm 39$	1/2-	6.83~15.58	0.92~2.10
N(1650)	$1650^{+3}_{-6}\pm26$	$145^{+5}_{-10} \pm 31$	1/2-	6.89~27.94	0.91~3.71
N(1710)	$1\overline{715}_{-2}^{+2}\pm29$	$95^{+2}_{-1} \pm 44$	1/2+	4.17~30.10	0.54~3.86
N(2065)	$2040^{+3}_{-4} \pm 25$	$230^{+8}_{-8} \pm 52$	3/2+	23.0~41.8	0.91~3.11

KA mass threshold enhancement

Observation of a strong enhancement near the threshold of $K^-\overline{\Lambda}$ mass spectrum at BES II

bio 11 it ab i la V. 10 a.

Best PWA fit: $(J^{P}=1/2^{-1})$ is favored)

 $m = 1625_{-7-23}^{+5+13} MeV$ $\Gamma = 43_{-7-11}^{+10+28} MeV$

 $Br(J/\psi \to pNx) \times Br(Nx \to K\Lambda) = 9.14^{+1.30+4.25}_{-1.25-8.28} \times 10^{-5}$

Fitted as N(1535) (becomes worse by about 5 σ ($\Delta \chi^2$ =28 with *d.o.f.*=2)).

 $Br(J/\psi \rightarrow pN(1535)) \times Br(N(1535) \rightarrow K\Lambda) = 4.26^{+0.15+4.22}_{-0.14-1.70} \times 10^{-4}$

SESIL Preliminary

Big Br.

办国行生路在机场1P70户 化

Comparison between data and PWA fit projections

N_x* is N(1535)?

***From BESII measurements:**

中国科学院高能物理研究所

 $BR(J/\psi \to pN(1535)) \bullet BR(N(1535) \to p\pi) \sim (1 \sim 2) \times 10^{-4}$

 $BR(J/\psi \rightarrow pN(1535)) \bullet BR(N(1535) \rightarrow K\Lambda) \sim 4 \times 10^{-4}$

If N_x^* is N(1535), its coupling to KA is much stronger than to $p\pi$.

Then N(1535) would have very large ssbar component (a 5-quark system).

Observation of $J/\psi(\psi') \rightarrow nK_S^0\overline{\Lambda}$

An enhancement near ΛK_S threshold is evident
N* and Λ* found in the ΛK_S and nK_S spectrum

More statistics and PWA are needed for the detail information

Summary for $J/\psi \rightarrow p K^- \overline{\Lambda}$

中国科学院高能物理研究所

* The KΛ mass threshold enhancement N_X(1610) could be a KΛ bound/resonant state since it might contain a very large hidden ssbar component (no matter whether it can be interpreted as N(1535)).

Whether N_X(1610) is N(1535) needs further study. We hope to answer this at BESIII.

Summary of the report

中国科学院高能物理研究所

We are expecting more new results on hadron spectroscopy at BESIII.

Thank You!