HADRON PHYSICS AT MAMI

Harald Merkel Johannes Gutenberg-Universität Mainz

10th International Workshop on Meson Production, Properties and Interaction Kraków, Poland

June 7, 2008

The Mainz Microtron

- Physics Program
- Selected Experiments
 - Transverse Beam Spin Asymmetry
 - \blacktriangleright Double polarized η Electroproduction
 - ► Hypernuclei

H. Merkel, Meson 2008

- Double sided microtron saves a lot of iron!
- Second linac operates at double frequency Improved phase stability
- First beam in HDSM: 12/2006
- First experiment: 2/2007, 2400h with MAMI C in 2007 (+3500h MAMI B!)

HDSM: Return path section

Overview

Nucleon structure

- Electromagnetic and weak form factors of the nucleon
- Polarizabilities of the nucleon
- Helicity structure of the nucleon
- Mesonic structure of the Nucleon
 - Threshold meson production
 - Coherent and incoherent meson production from the nucleus
 - ▶ Resonances *e.g.* $P_{11}(1440)$, $S_{11}(1535)$
 - ▶ Meson decays *e.g.* $\eta \rightarrow 3\pi^0$, $\eta' \rightarrow 3\pi^0$, $\eta' \rightarrow \eta \pi^0 \pi^0$
- Strangeness
 - Hyperon production
 - ► Hypernuclei
 - **Coherent** $\phi(1020)$ -meson production
- Few-Body physics
 - ▶ ${}^{3}He$ Spinstructure $\vec{e} + {}^{3}\vec{He} \rightarrow \vec{p} + d$

2-Photon Exchange

Measurement of $G_E(Q^2)$

- via Rosenbluth separation
- via Polarization transfer
- Different results from different experimental techniques

Generalized Form Factors

$$G_E(s,Q^2), G_M(s,Q^2), F_3(s,Q^2), F_4(s,Q^2), F_5(s,Q^2), F_6(s,Q^2)$$

- Complex functions of Q^2 and s
- Real parts contribute to Cross Sections
- Imaginary Parts contribute to Asymmetries, e.g. Transverse Beam Spin Asymmetry:

$$A_{\perp} = \frac{\sigma_{\uparrow\uparrow} - \sigma_{\downarrow\uparrow}}{\sigma_{\uparrow\uparrow} + \sigma_{\downarrow\uparrow}} \sim \left[-\tau Im\left(\frac{F_3}{G_M}\right) - \frac{|G_E|}{|G_M|} Im\left(\frac{F_4}{G_M}\right) - \frac{1}{1 + \tau} \left(\tau + \frac{|G_E|}{|G_M|}\right) Im\left(\frac{\nu F_5}{M^2 |G_M|}\right) \right]$$

A4 - Parity Violating Electron Scattering

Elastic Peak

200

ADC-Channel 32

Elastic Cut

250

Elastic Cut

 π^0

Results - Transverse Beam Asymmetry

H. Merkel, Meson 2008

η Electroproduction

A1: 3-Spectrometer-Setup at MAMI

Spectrometer A:

$$\alpha > 20^{\circ}$$

 $p < 735 \frac{\text{MeV}}{c}$
 $\Delta \Omega = 28 \text{ msr}$
 $\Delta p/p = 20\%$

Spectrometer B:

$$\alpha > 8^{\circ}$$

 $p < 870 \frac{\text{MeV}}{c}$
 $\Delta \Omega = 5.6 \text{ msr}$
 $\Delta p/p = 15\%$

Spectrometer C:

$$\alpha > 55^{\circ}$$

 $p < 655 \frac{\text{MeV}}{c}$
 $\Delta \Omega = 28 \text{ msr}$
 $\Delta p/p = 25\%$

Resonance Structure of the Nucleon

Differential Cross Section

Low Energy:

- Isotropic angular distribution
- \Rightarrow *s*-wave dominant!

- Resonance structure in *s*-wave \Rightarrow dominant $S_{11}(1535)$ resonance
- Background is small

Eta-MAID: W.-T. Chiang, et al., Nucl. Phys. A 700 (2002)

PHOENICS (Bonn): Polarized target asymmetry T

 $\sigma T \approx 3 \sin \Im [E_{0+}^* (E_{1+} - M_{1+})] - 3 \sin \theta \cos \theta \Im [E_{0+}^* (E_{2-} + M_{2-})]$

A. Bock et al., Phys. Rev. Lett. 81, 534-537 (1998)

- Phase-difference $\phi_0 \phi_2$ between E_{0+} and $E_{2-} + M_{2-}$ has to be adjusted!
- Problem of the $S_{11}(1535)$ or of the $D_{13}(1520)$ -resonance?
- Breit-Wigner shape?

L. Tiator et al., Phys. Rev. C 60 (1999) 035210

- Angular distribution: flat
- Energy dependence is well described by Breit-Wigner shape
- But: Reduced cross section $\approx E_{0+}$ is flat!

- Chirale Lagrangian + coupled channels
- No resonance!
- Interpretation: bound $K\Sigma$ state

N. Kaiser, T. Waas, W. Weise, Nucl. Phys. A 612, 297-320 (1997)

 P_{y} : similar interference as σT !

$$P_y \sim \sin\theta \Im \{ E_{0+}^* (3\cos\theta(E_{2-} - 3M_{2-}) - 2M_{1-}) \} + \dots$$

 P_x^h , P_z^h : dominated by $|E_{0+}|^2$

$$P_x^h \sim -\sin\theta \left[|E_{0+}|^2 - \Re \{ E_{0+}^* (E_{2-} - 3M_{2-}) \} \right]$$

$$P_y^h \sim \cos\theta |E_{0+}|^2 - 2\Re \{ E_{0+}^* [M_{1-} - \cos\theta (E_{2-} - 3M_{2-})] \}$$

• Random background $\approx 2\%$

• Physical background $\approx 8\%$

e.g.
$$\gamma^* + p \rightarrow p + \underbrace{\pi^+ + \pi^-}_{\approx m_{\eta}}$$

No surprises:

- Operation Dominant $|E_{0+}|^2$
- Consistent with existing data
- No visible S_{0+} contribution

Clear deviation from Eta-Maid

- Consistent with phase rotation $\phi_0 \phi_2$
- \Rightarrow consistent with ELSA results on T

H. Merkel et al., Phys. Rev. Lett. 99, 132301 (2007)

Strangeness

Strangeness Production - Kaon Spectrometer (KAOS)

Hypernuclei

• Production via ${}^{A}Z(e, e'K^{+})^{A}_{\Lambda}(Z-1)$ reaction

U

Summary

MAMI C

- ► 1.5 GeV electron beam
- ► High beam quality, intensity, and polarization
- Various detector systems
- Polarization of beam, target, and recoil particle
- Extensive hadronic program
 - lacktrian Hadron Structure: formfactors, 2γ amplitudes, polarizabilites, etc.
 - Meson Production: threshold production, nucleon resonances, coherent production
 - Meson decays: η, η'
 - ► Hypernuclei
 - ▶ ...