Charm and Charmonium Spectroscopy at BaBar.

Antimo Palano INFN and University of Bari on behaf of the BaBar Collaboration

\Box Summary:

- The BaBar Experiment.
- Recent results on new Charm States.
- Recent Results on new Charmonium States.
- Conclusions.

Meson2008, Krakow, Poland, June 6-10, 2008

Charm Spectroscopy.

 $\Box \text{ The discovery of the new } D_{sJ} \text{ states has brought into question potential} \\ \text{models.} \\ -- \text{predicted (Godfrey-lsgur model)}$

 \Box Mass positions of $D_{sJ}^*(2317)^+$ and $D_{sJ}(2460)^+$ very much lower than expected and below the DK and D^*K thresholds respectively.

Need new experimental information to disentangle different models.

A new state discovered in BaBar: $D_{sJ}(2860)$.

 \Box Looking to very small cross sections in the study of continuum (240 fb^{-1}).

$$e^+e^- \to D^0(\to K^-\pi^+, K^-\pi^+\pi^0)K^+X$$

 $e^+e^- \to D^+K^0_S X$
 $\Box \ N_{D^0 \to K^-\pi^+} = 950,000, \ N_{D^0 \to K^-\pi^+\pi^0} = 790,000$
and $N_{D^+ \to K^-\pi^+\pi^+} = 430,000$ events.
 \Box Require the center of mass momentum
 $p^*(DK) > 3.5 \ \text{GeV}/c.$

Phys.Rev.Lett. 97 (2006) 222001

- \square Narrow reflection at threshold due to $D_{s1}(2536)^+$.
- \square Signal of $D_{s2}^*(2573)$.
- \square Bump at 2690 MeV/ c^2 .
- \Box New state at 2860 MeV/ c^2 .
- \square No signal for these new structures in sidebands or Monte Carlo.

A new state: $D_{sJ}(2860)$.

□ Background subtracted sum of the three modes. □ Precision measurement of the $D_{s2}^*(2573)$

parameters:

 $M(D_{s2}^*(2573)) = (2572.2 \pm 0.3 \pm 1.0) \text{ MeV}/c^2$ $\Gamma(D_{s2}^*(2573)) = (27.1 \pm 0.6 \pm 5.6) \text{ MeV}$

□ Parameters of the new state. $M(D_{sJ}^*(2860)) = (2856.6 \pm 1.5 \pm 5.0)$ MeV/ c^2 $\Gamma(D_{sJ}^*(2860)) = (47 \pm 7 \pm 10)$ MeV

□ Final state is DK, i.e. two pseudoscalars. Therefore: $J^P = 0^+, 1^-, 2^+, 3^-, \dots$

Interpretation?

- Radial excitation of $D_{s0}^{*}(2317)$? hep-ph/0606110
- $c\bar{s}$ with $J^P = 3^-?$ hep-ph/0607245
- $c\bar{s}$ with $J^P = 0^+$? hep-ph/0608139

□ The possible observation of the decay to D^*K would solve the problem. □ Another resonance at 2690 MeV/ c^2 ? $M(X(2690)) = (2688 \pm 4 \pm 3) \text{ MeV}/c^2, \Gamma(X(2690)) = (112 \pm 7 \pm 36) \text{ MeV}$

 $\Box \text{ Resonance with } J = 1 \text{ simultaneously observed by BELLE in the study of}$ $B^+ \to D^0 \bar{D}^0 K^+. \quad {}_{\mathrm{arXiv:0707.3491}}$ $M = (2708 \pm 9^{+11}_{-10}) \text{ MeV}/c^2, \ \Gamma = (108 \pm 23^{+36}_{-31}) \text{ MeV}$

 \Box Most likely the same state.

 \Box No signal of $D^*_{sJ}(2860)$ in B decays. This would favour $J^P=3^-$ (suppressed in B decays).

Charmonium spectroscopy.

In the past few years many new charmonium states have been discovered.
At moment we do not have a clear picture.

□ Several states do not fit in the quark model.

 \Box Presence of exotic states?

Charmonium spectroscopy: X(3872).

 $\Box X(3872) \rightarrow J/\psi \pi \pi$ (original observation by BELLE), possibly $J/\psi \rho$. $m_X = 3871.4 \pm 0.6 \quad \text{MeV}/c^2, \quad \Gamma_X < 2.3 \quad \text{MeV} \quad @90\% \quad C.L.(PDG)$

 $\Box J^{PC} = 1^{++}$ favoured.

 \square Not matching any predicted state.

 \Box Above the $D\overline{D}$ threshold. Should have large width but it is narrow.

 \Box Tetraquark model expects different rates and mass difference between $B^0 \to K^0 X$ and $B^+ \to K^+ X$.

New results on X(3872) from BaBar.

 \Box Full statistics: 413 fb^{-1} : arXiv:0803.2838

 \Box Use $B \to \psi(2S)K$ as control sample to correct the $\psi \pi^+ \pi^-$ mass.

 $\Box \ \psi(2S) \text{ mass:} \\ B^+: m = 3685.52 \pm 0.07, \quad B^0: m = 3685.54 \pm 0.16 \quad \text{MeV}/c^2 \\ \text{PDG: } m = 3686.09 \pm 0.04 \quad \text{MeV}/c^2 \\ R = B^0/B^+ = 0.81 \pm 0.05 \pm 0.01, \\ \text{PDG: } R = 0.96 \pm 0.11 \\ \end{cases}$

 \square Mass difference:

 $\Delta m = (2.7 \pm 1.6 \pm 0.4) \quad \text{MeV}/c^2, \quad (\text{BELLE: } 0.22 \pm 0.90 \pm 0.27)$

Study of $B \to D^{(*)}\overline{D}^{(*)}K$ in BaBar.

 $\Box \text{ Observation of } B \to \psi(4770)K, \ \psi(3770) \to D\bar{D}. \text{ Phys. Rev. D77, 011102 (2008)}$ $\Box \text{ Observation of } B \to D_{s1}\bar{D}, \ D_{s1} \to D^*K.$

 \Box Problem with threshold. Fit with 90 different PDFs.

X(3872) Mass.

 \Box Poor agreement in mass between $J/\psi\pi\pi$ and $D^*\bar{D}$ modes, $\approx 3\sigma$. Different states?

 \Box However, presence of a threshold in $D^*\overline{D}$.

W. Dunwoodie and V. Ziegler (PRL100, (2008)062006): if $\Gamma = 3$ MeV, expected behavior.

Study of $X(3980) \rightarrow J/\psi\omega$ in BaBar.

□ Broad structure at threshold observed by BELLE in $B \to J/\psi\omega K$. □ BaBar analysis. Weight the events by the ω angular distributions. $(w_i = \frac{5}{2}(1 - 3\cos^2 \theta_h^i))$ where θ_h is the angle between the π^+ and π^0 directions in the $\pi^+\pi^-$ rest frame.

arXiv:0711.2047

Study of the exclusive ISR production of $D\overline{D}$ in BaBar.

 $\Box \text{ Study of } e^+e^- \to \gamma_{ISR}D\bar{D}. \quad \text{arXiv:0710.1371}$ $\Box D^0 \text{ reconstructed as:}$ $D^0 \to K^-\pi^+, K^-\pi^+\pi^0, K^-\pi^+\pi^+\pi^-.$ $D^+ \text{ reconstructed as:}$ $D^+ \to K^-\pi^+\pi^+, K^0_S\pi^+.$

 \Box ISR photon reconstructed as missing mass.

 \Box Observation of structure in the 3.9 GeV region: expected from the coupled channel model of Eichten et al.

E. Eichten et al., Phys. Rev. **D21**, 203 (1980)

The bottomonium spectrum.

 $\Box \approx 100$ M events at the $\Upsilon(2S)$ and at the $\Upsilon(3S)$

□ Analysis in progress. It may lead to the discovery on the missing η_b and h_b . □ Spectrum still to be fully exploited.

Conclusions.

 \Box Spectroscopy is reserving many new surprises.

 \square Several new charmed and charmonium states discovered in the last few years.

 \Box Many newly discovered states in the charm and charmonium sectors are waiting for a classification in the quark model.

 \Box New information is needed. Several analyses going on in BaBar.

B-factories have produced a large mess of unexpected new states.
Potential models are in trouble in trying to explain the available data.
Some theorists suggest that we may be close to the start of a new spectroscopy.