Hadron physics with the Crystal Ball at MAMI

A. Starostin

Department of Physics and Astronomy UCLA, box 1547, Los Angeles, CA, 90095-1547

Meson08/Krakow, Poland, 6 - 10 June 2008

A B > 4
 B > 4
 B

Selected Physics Topics

- Magnetic Dipole Monents of Δ(1232) and S₁₁(1535)
- Meson Photoproduction from Nuclei
- Tests of Chiral Perturbation Theory in η and η'
- Future Polarization and Double Polarization Experiments

< 🗇

CB@MAMI Collaboration

- B. Nefkens, S. Prakhov, A. Starostin and I. Suarez: UCLA, USA
- J. Ahrens, H.J. Arends, A. Thomas, L. Tiator, D. von Harrach, Th. Walcher: Uni. of Mainz, Germany
- R. Beck, M. Lang, S. Schumann, and M. Unverzagt: University of Bonn, Germany
- S. Altieri, A. Braghieri, P. Pedroni, and T. Pinelli: INFN Sezione di Pavia, Pavia, Italy
- J.R.M. Annand, K. Livingston, I.J.D. MacGregor and G. Rosner: Uni. of Glasgow, UK
- W. Briscoe: George Washington University, Washington, USA
- S. Cherepnya, L. Fil'kov, and V. Kashevarow: Lebedev Institute, Moscow, Russia
- V. Bekrenev, S. Kruglov, A. Koulbardis and N. Kozlenko: Petersburg Nuclear Physics Institute, Russia
- B. Boillat, B. Krusche and F. Zehr: Institut fur Physik University of Basel, Switzerland
- R. Gregor, V. Metag, M. Kotulla, S. Lugert, R. Novotny, and M. Pfeiffer: Giessen, Germany
- D. Branford, K. Foehl, D. Glazier, C.M. Tarbert and D.P. Watts: University of Edinburgh, Edinburgh, UK
- V. Lisin, R. Kondratiev and A. Polonski: Institute for Nuclear Research, Moscow, Russia
- D. Hornidge: Mount Allison University, Sackville, Canada
- P. Grabmayr and T. Hehl: Physikalisches Institut Universitat Tubingen, Germany
- M. Manley: Kent State University, Kent, USA
- M. Korolija and I. Supek: Rudjer Boskovic Institute, Zagreb, Croatia
- D. Sober: Catholic University, Washington DC

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Experimental Setup at MAMI

Detection System

- Crystal Ball: spherical detector, 672 Nal crystals 16 r.l., geometrical acceptance ~94%. Resolution: $\sigma_F/E \sim 1.7\%/(E \text{ (GeV)})^{0.4}$; $\sigma_{\Theta} \sim 2 - 3^{\circ}$.
 - TAPS: forward wall, 384 BaF crystals 12 r.l., excellent energy and TOF resolution, particle ID via pulse shape analysis, a veto counter in front of each crystal.
 - Tracker: MWPC two layers, angular resolution 2° , PID detector 24–elements barrel of plastic scintillators, particle ID based on dE/dx.

Beam and Targets

- MAMI-B: high intensity, very stable beam of polarized electrons, $E_{max} = 883$ MeV.
- MAMI-C: $E_{max} = 1.508$ GeV, first experiments started early 2007.
- Tagger: provides high resolution photon beam with $E_{max}(\gamma) \approx 0.94 E_{max}(e^{-}).$
- Targets: Cryogenic liquid hydrogen, deuterium, ³He, complex nuclear targets. Coming soon: Frozen-spin long. polarized, gas ³He,

A. Starostin

Crystal Ball at MAMI

Magnetic Dipole Monents of Δ (1232) and S_{11} (1535) Meson Photoproduction from Nuclei Tests of Chiral Perturbation Theory in η and η' Future Polarization and Double Polarization Experiments

Magnetic Moments of Baryons

Nature of μ_b

- μ_b is due to quark spins and to the average of the quark currents
- μ_b is a fundamental characteristic of every baryon and a unique and elegant way for testing theoretical models

What is known?

- Baryon octet ($\tau \ge 10^{-10}$ sec): μ_b well known measured with spin precession techniques.
- Saryon decuplet ($\tau \leq 10^{-20}$ sec): μ_b unknown (except for Ω^- (1672)).
- Radiative transition of resonances are sensitive for the μ_b . Proposed by Kondratyuk and Ponomarev (Yad. Fiz. 7 (1968) 11) for Δ^{++} (1232) and reaction $\pi^+ p \rightarrow \Delta^{++} \gamma' \rightarrow \pi^+ \gamma' p$; measured by Nefkens *et al.* Phys. Rev. D 18 (1978) 3911.

Predictions for the value of the $\mu(\Delta^+(1232))$

Theory	Δ^+	References
LCQCD	2.2 ± 0.4	T.M. Aliev et al., Phys. Rev. D 62, 053012 (2000).
QCDSR	2.19 ± 0.50	B.L. loffe, Nucl. Phys. B188, 317 (1981); F.X. Lee, Phys. Rev. D (57), 1801 (1998).
Latt.	2.46 ± 0.31	D.R. Leinweber et al., Phys. Rev. D 46, 3067 (1992).
χPT	2.1 ± 0.2	M.N. Butler et al., Phys. Rev. D 49, 3459 (1994).
RQM	2.38	F. Schlumpf, Phys. Rev. D 48, 4478 (1993).
NQM	2.73	K. Hikasa et al., Phys. Rev. D 45, S1 (1992).
χ QSM	2.19	H.C. Kim et al., Phys. Rev. D 57, 2859 (1998).
χB	0.75	S.T. Hong and D.P. Min, nucl-th/9909004.

Magnetic Dipole Monents of Δ (1232) and S_{11} (1535) Meson Photoproduction from Nuclei Tests of Chiral Perturbation Theory in η and η' Future Polarization and Double Polarization Experiments

$\Delta^+(1232)$ Magnetic Moment

angular momentum, parity and time reversal only $\underline{\mathsf{M1}}$ and $\underline{\mathsf{M3}}$ possible

Magnetic Dipole Monents of Δ (1232) and S₁₁(1535) Meson Photoproduction from Nuclei Tests of Chiral Perturbation Theory in η and η' Future Polarization and Double Polarization Experiments

Theoretical predictions and experimental difficulties

- "Effective Lagrangian approach" (A.I Machavariani, A. Faeßler, and Buchmann, NP A646 (1999) 631)
- "Dynamical models" (W.T Chiang, M. Vanderhaeghen, S.N. Yang, and D. Drechsel, PRC (2005) 015204)
- "Chiral effective field theory" (V. Pascalutsa and M. Vanderhaeghen PRD 77 (2008) 014027)
- To be sensitive, the differential cross section has to be measured to the accuracy of 5-10%
 - Experimental backgrounds from $\gamma p \rightarrow \pi^0 n$ (main) and $\gamma p \rightarrow \pi^0 \pi^0 p$.

A B A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Crystal Ball at MAMI

Magnetic Dipole Monents of Δ (1232) and S_{11} (1535) Meson Photoproduction from Nuclei Tests of Chiral Perturbation Theory in η and η' Future Polarization and Double Polarization Experiments

Magnetic Dipole Moment of $S_{11}(1535)$

JIAN LIU, JUN HE, AND Y. B. DONG

TABLE VI. Magnetic moments of the resonances with J = 1/2 (in units of nuclear magneton) in the different exchange models.

9 _{1/2} -(°)[9]	OPE 25.5	$\begin{array}{c} \text{OPsE} \\ \text{23} \pm 1 \end{array}$	$\begin{array}{c} \text{GBE} \\ -27 \pm 12 \end{array}$	OGE -32
$\begin{array}{c} u_{1/2(S_{11}^{+}(1535))}(CQM)\\ u_{1/2(S_{11}^{+}(1535))}(\chi QM)\\ u_{1/2(S_{11}^{+}(1535))}(\chi QM)\\ u_{1/2(S_{11}^{0}(1535))}(\chi QM)\\ u_{1/2(S_{11}^{0}(1535))}(\chi QM)\\ u_{1/2(S_{11}^{+}(1650))}(CQM)\\ u_{1/2(S_{11}^{+}(1650))}(\chi QM)\end{array}$	-0.5 -0.4 1.0 0.9 2.5 1.9	$\begin{array}{c} -0.4^{+0.0}_{+0.0}\\ -0.3^{+0.1}_{-0.0}\\ 0.9^{+0.0}_{-0.0}\\ 0.8^{+0.0}_{-0.0}\\ 2.4^{+0.0}_{-0.0}\\ 1.9^{+0.0}_{-0.0}\\ 1.9^{+0.0}_{-0.0}\\ 1.2^{-0.0}\\ \end{array}$	$\begin{array}{c} 1.7 \substack{-0.6 \\ +0.5 \\ +0.4 \\ -0.4 \\ -1.1 \substack{+0.4 \\ -0.3 \\ -0.9 \substack{+0.4 \\ -0.3 \\ -0.5 \\ 0.3 \substack{+0.6 \\ -0.5 \\ 0.1 \substack{+0.5 \\ -0.3 \\ -0.9 \\ -0.4 \\ -0.9 \\ -0.4 \end{array}$	1.9 1.6 -1.3 -1.0 0.1 0.0 1.0
$u_{1/2(S_{11}^{0}(1650))}(CQM) u_{1/2(S_{11}^{0}(1650))}(\chi QM)$	-1.3 -1.2	$-1.2^{+0.0}_{+0.0}$ $-1.2^{-0.0}_{+0.1}$	$0.8_{+0.3}_{+0.3}$ $0.6_{-0.4}^{+0.3}$	0.7

S_{11}^+ (1535) CQM (W.-T. Chiang et al. NP A 723 (2003) 2005) 1.89 -1.28 χ UM (T. Hyodo et al. nucl-th 0305023) 1.1 -0.25

Magnetic Dipole Monents of Δ (1232) and S_{11} (1535) Meson Photoproduction from Nuclei Tests of Chiral Perturbation Theory in η and η' Future Polarization and Double Polarization Experiments

Medium Modification at Normal Nuclear Density

- In QCD hadrons are expected to change their mass in nuclear matter of normal density \(\rho_0\).
- Effect was studied using production of short living particles (f₀(600), ρ()770, etc.) inside nuclei.
- Rescattering of decays product inside the nuclei is a serious problem.

V. Bernard et al. PRL 59 (1987) 966; L. Roca et al. PL B541 (2002) 77; A. Starostin et al. PRL 85 (2000) 5539; J.G. Messchendorp et al. PRL 89 (2002) 222302.

Magnetic Dipole Monents of Δ (1232) and S_{11} (1535) Meson Photoproduction from Nuclei Tests of Chiral Perturbation Theory in η and η' Future Polarization and Double Polarization Experiments

$\pi\pi$ Invariant Mass on Complex Targets

Magnetic Dipole Monents of $\Delta(1232)$ and $S_{11}(1535)$ Meson Photoproduction from Nuclei Tests of Chiral Perturbation Theory in η and η' Future Polarization and Double Polarization Experiments

Measurement of the in–medium ω mass

New MAMI-C proposal

Results of the TAPS experiment show effect of the nuclear media on ω mass. More statistics needed. CBTAPS@MAMI experiment was proposed and approved.

300 h worth of data were collected this April–May on *Nb* target. More data will be collected this summer. M. Lutz *et al.* NP A706 (2002) 431; D. Trnka *et al.* PRL 94 (2005) 192303.

Magnetic Dipole Monents of Δ (1232) and S_{11} (1535) Meson Photoproduction from Nuclei Tests of Chiral Perturbation Theory in η and η' Future Polarization and Double Polarization Experiments

ヘロト ヘワト ヘビト ヘビト

ω photoproduction at MAMI-C

 ω were detected using $\omega \to \pi^0 \gamma$ and $\omega \to e^+e^-$ decay modes. The $\omega \to e^+e^-$ mode does not suffer from the pion rescattering inside the nuclei that is a largest correction while studying the medium effects.

э

Magnetic Dipole Monents of Δ (1232) and S_{11} (1535) Meson Photoproduction from Nuclei Tests of Chiral Perturbation Theory in η and η' Future Polarization and Double Polarization Experiments

Coherent and incoherent π^0 production from nuclei

- Give access to nuclear matter form factor
- Modeling structure of neutron stars
-

will be presented in details later today by D.Watts

Magnetic Dipole Monents of Δ (1232) and S_{11} (1535) Meson Photoproduction from Nuclei Tests of Chiral Perturbation Theory in η and η' Future Polarization and Double Polarization Experiments

Dalitz plot of $\eta \rightarrow 3\pi^{0}$

Slope parameter α

The density of the Dalitz plot is constant in QCD:

$$A(\eta) = \frac{m_u - m_d}{\sqrt{6}F^2} \times (\sqrt{1/2}\cos(\phi) - \sin(\phi))$$

(P. Di Vecchia *et al.*, Nucl. Phys. **B** 181 (1981) , 318). The dependence gradient appears as a result of $\pi\pi$ interaction and can be calculated in χPT .

$$\begin{aligned} &A(\eta \to 3\pi^0) \sim (m_u - m_d) \times (1 + \alpha z) \\ &\Gamma(\eta \to 3\pi^0) \sim (m_u - m_d)^2 \times (1 + 2\alpha z) \\ &z = 6 \sum_{i=1}^3 (E_i - m_\eta / 3)^2 / (m_\eta - m_{\pi^0})^2 \end{aligned}$$

Search for cusp in the $\pi^0 \pi^0$ invariant mass

Cusp on the $\pi^0\pi^0$ invariant mass distribution expected at the opening of the $\pi^0\pi^0 \to \pi^+\pi^-$ channel. The cusp carries information on the s-wave $\pi\pi$ scattering length combination $a_0 - a_2$.

(日)

Magnetic Dipole Monents of Δ (1232) and S_{11} (1535) Meson Photoproduction from Nuclei Tests of Chiral Perturbation Theory in η and η' Future Polarization and Double Polarization Experiments

Current status on the experimental and theoretical study of the $\eta \rightarrow 3\pi^0$ decay

- Predictions for α: J.Kambor et al. (1996): -0.007 or -0.0014 B.Borasoy et al. (2005): -0.031±0.003
- no experimental results for the $m(\pi^0\pi^0)$ cusp in $\eta \rightarrow 3\pi^0$
- J.Belina (2006): ~5% effect

Experimental Details Selected Physics Topics Summary Summary Magnetic Dipole Monents of $\Delta(1232)$ and $S_{11}(1535)$ Meson Photoproduction from Nuclei Tests of Chiral Perturbation Theory in η and η' Future Polarization and Double Polarization Experiments

Slope fit for the full data set (3 runs: 04.07, 06.07, 07.07 ; 26.6M η 's produced)

A. Starostin Crystal Ball at MAMI

Magnetic Dipole Monents of Δ (1232) and S_{11} (1535) Meson Photoproduction from Nuclei **Tests of Chiral Perturbation Theory in** η and η' Future Polarization and Double Polarization Experiments

ヘロト 人間 ト 人注 ト 人注 ト

Summary of results for the $\eta \rightarrow 3\pi^0$ slope parameter depending on experimental conditions and selection cuts $\rightarrow \alpha = -0.032 \pm 0.003$

Test	Cuts	Statistics	α	χ²/ndf
1	CL=2%	3.06M	-0.0322±0.0012	31.4/18
2	CL=5%	2.78M	-0.0326±0.0013	32.2/18
3	CL=10%	2.50M	-0.0329±0.0014	30.0/18
4	CL=20%	2.11M	-0.0326±0.0015	25.9/18
5	CL=2%, Εγ<1.1GeV	2.76M	-0.0320±0.0013	26.9/18
6	CL=2%, Εγ<0.9GeV	2.18M	-0.0321±0.0015	20.2/18
7	CL=2%, Ecb<0.42GeV	2.83M	-0.0316±0.0013	29.1/18
8	CL=2%, Ecb<0.47GeV	2.60M	-0.0319±0.0013	30.7/18
9	CL=2%, $\cos\theta_{\eta} < 0$.	1.73M	-0.0334±0.0017	23.5/18
10	CL=2%, $\cos\theta_{\eta}$ >0.	1.32M	-0.0312±0.0019	14.5/18
11	CL=2%, 7cl	2.39M	-0.0323±0.0014	26.4/18
12	CL=2%, 6cl	0.663M	-0.0292±0.0027	22.0/18

work by S. Prakhov, UCLA

Magnetic Dipole Monents of Δ (1232) and S_{11} (1535) Meson Photoproduction from Nuclei Tests of Chiral Perturbation Theory in η and η' Future Polarization and Double Polarization Experiments

Search for the cusp on the $\pi^0\pi^0$ Invariant Mass

Magnetic Dipole Monents of Δ (1232) and S_{11} (1535) Meson Photoproduction from Nuclei Tests of Chiral Perturbation Theory in η and η' Future Polarization and Double Polarization Experiments

Decay $\eta \to \pi^0 \gamma \gamma$

Test of higher-order χ PT

- The leading order is forbidden because there is no direct $\gamma \pi^0$, and $\gamma \eta$ coupling.
- The tree diagram of the second order is forbidden because there is no direct $\gamma \pi^0$, and $\gamma \eta$ coupling.
- The loop diagram of the second order is suppressed because it violates G-parity.
- The third order is the first allowed term.

 $\Gamma(\eta \to \pi^0 \gamma \gamma) = 0.47 \pm 0.10 \text{ eV}$ (E. Oset, J.R. Pelaez, and L. Roce, Phys. Rev. D, 67 (2003) 073013)

Magnetic Dipole Monents of $\Delta(1232)$ and $S_{11}(1535)$ Meson Photoproduction from Nuclei Tests of Chiral Perturbation Theory in η and η' Future Polarization and Double Polarization Experiments

$\eta \to \pi^0 \gamma \gamma$ from CB@MAMI-B

Example of the $\eta{\rightarrow}\pi^{\scriptscriptstyle 0}\gamma\gamma$ analysis with the CB at MAMI-B

work by S. Prakhov, UCLA

A. Starostin Crystal Ball at MAMI

Magnetic Dipole Monents of Δ (1232) and S_{11} (1535) Meson Photoproduction from Nuclei **Tests of Chiral Perturbation Theory in** η and η' Future Polarization and Double Polarization Experiments

$\eta \to \pi^0 \gamma \gamma$ Matrix Element

The CB (AGS and MAMI-B) results on the yield of $\eta{\to}\pi^0\gamma\gamma$ as a function of $m^2(\gamma\gamma)$ and comparison with the VMD prediction

Presented by S. Prakhov on MENU 2007 (to be published on the SLAC econf archive)

Magnetic Dipole Monents of $\Delta(1232)$ and $S_{11}(1535)$ Meson Photoproduction from Nuclei Tests of Chiral Perturbation Theory in η and η' Future Polarization and Double Polarization Experiments

$\eta \rightarrow \pi^0 \gamma \gamma$ from CB@MAMI-C

work by S. Prakhov, UCLA

A. Starostin Crystal Ball at MAMI

Magnetic Dipole Monents of Δ (1232) and S_{11} (1535) Meson Photoproduction from Nuclei Tests of Chiral Perturbation Theory in η and η' Future Polarization and Double Polarization Experiments

η and η' Decays at MAMI-C

η physics

- CB@MAMI will produce about 3 imes 10⁸ η within next a few years
- We will continue studying $\eta \to 3\pi^0$ Dalitz plot and $\eta \to \pi^0 \gamma \gamma$
- More statistics will be collected for the $\eta \to e^+ e^- \gamma$ decay (EM form-factor)

• We will improve on the upper limits for the *CP* and *C* forbidden decays, such as $\eta \to 4\pi^0$, $\eta \to \pi^0\gamma$, $\eta \to 2\pi^0\gamma$, $\eta \to 3\pi^0\gamma$, etc.

η' Decays at MAMI-C

- We will produce about 10⁶ η' at MAMI-C
- The primary goal is $\eta' \to \eta \pi^0 \pi^0$ Dalitz plot: slope parameter and the cusp on the $\pi^0 \pi$ invariant mass
- New upper limits will be set for the *CP* and *C* forbidden η' decays: $\eta' \to 4\pi^0, \eta \to \pi^0 e^+ e^-, \eta \to 3\gamma.$

Magnetic Dipole Monents of Δ (1232) and S_{11} (1535) Meson Photoproduction from Nuclei Tests of Chiral Perturbation Theory in η and η' Future Polarization and Double Polarization Experiments

Complete set of measurements

Usual symbol	Helicity representation	Transversity representation	Experiment required ^{a)}	Туре	
dσ/dt	$ N ^2 + S_1 ^2 + S_2 ^2 + D ^2$	$ b_1 ^2 + b_2 ^2 + b_3 ^2 + b_4 ^2$	{-; -; -}		
$\Sigma d\sigma/dt$	$2\operatorname{Re}(S_1^*S_2 - ND^*)$	$ b_1 ^2 \! + \! b_2 ^2 \! - \! b_3 ^2 \! - \! b_4 ^2$	${L(\frac{1}{2}\pi,0);-;-}$ $\{-;v;v\}$		
T dσ/dt	$2\mathrm{Im}(S_1N^*-S_2D^*)$	$ b_1 ^2 - b_2 ^2 - b_3 ^2 + b_4 ^2$	$\{-; y; -\} \\ \{L(\frac{1}{2}\pi, 0); 0; y\}$	s	
P d σ/dt	$2\mathrm{Im}(S_2N^*-S_1D^*)$	$ b_1 ^2 - b_2 ^2 + b_3 ^2 - b_4 ^2$	$\{-; -; y\}$ $\{L(\frac{1}{2}\pi, 0); y; -\}$		
Gdø/dt	$-2Im(S_1S_2^* + ND^*)$	$2Im(b_1b_3^* + b_2b_4^*)$	$\{L(\pm \frac{1}{4}\pi); z; -\}$		
Hdø/dt	$-2Im(S_1D^* + S_2N^*)$	$-2\text{Re}(b_1b_3^* - b_2b_4^*)$	$\{L(\pm \frac{1}{4}\pi); x; -\}$		
Edo/dt	$ S_2 ^2 - S_1 ^2 - D ^2 + N ^2$	$-2\text{Re}(b_1b_3^* + b_2b_4^*)$	$\{c; z; -\}$	BI	
Fdo/dt	$2\text{Re}(S_2D^* + S_1N^*)$	$2 \text{Im}(b_1 b_3^* - b_2 b_4^*)$	$\{c; x; -\}$		
Oyda/dt	$-2Im(S_2D^* + S_1N^*)$	$-2\text{Re}(b_1b_4^* - b_2b_3^*)$	$\{L(\pm \frac{1}{4}\pi); -; x'\}$		
O,do/dt	$-2Im(S_2S_1^* + ND^*)$	$-2Im(b_1b_4^* + b_2b_3^*)$	$\{L(\pm \frac{1}{4}\pi); -; z'\}$		
C_do/dt	$-2\text{Re}(S_2N^* + S_1D^*)$	$2Im(b_1b_4^* - b_2b_3^*)$	$\{c; -; x'\}$	BK	
C_do/dt	$ S_2 ^2 - S_1 ^2 - N ^2 + D ^2$	$-2\operatorname{Re}(b_1b_4^* + b_2b_3^*)$	$\{c; -; z'\}$		
T,do/dt	$2 \text{Re}(S_1 S_2^* + ND^*)$	$2\text{Re}(b_1b_2^* - b_3b_4^*)$	$\{-; x; x'\}$		
T_do/dt	$2\text{Re}(S_1N^* - S_2D^*)$	$2Im(b_1b_2^* - b_3b_4^*)$	$\{-; x; z'\}$		
L_do/dt	$2\text{Re}(S_2N^* - S_1D^*)$	$2 \text{Im}(b_1 b_2 * + b_3 b_4 *)$	$\{-; z; x'\}$	TR	
L,do/dt	$ S_1 ^2 + S_2 ^2 - N ^2 - D ^2$	$2\text{Re}(b_1b_2^* + b_3b_4^*)$	$\{-; z; z'\}$		

I.S. Barker, A. Donnachie, and J.K. Storrow, Nucl. Phys. B95 (1975) 347.

Lin. pol.	of beam	up to	60%,	circ.	pol.	close
to 100%						

- Long. pol. "frozen-spin" target (will be available by end of this year)
- Long. pol. ³ He gas target (under construction)
- Nuclear recoil polarimeter (see talk by M. Sikora on this conference)
- Trans. pol. frozen-spin target (under consideration, can be available next year)
- beam asymmetry Σ, target asymmetry (T), recoil asymmetry (P)

э

ヘロン 人間 とくほ とくほう

- G, E, H, F
- O_X, O_Z, C_X, C_Z
- $\bullet \quad T_x, \, T_z, \, L_x, \, L_z$

Summary

- The first round of the CBTAPS@MAMI experiments was completed in 2005. A large sample of data was collected using the beam of tagged polarized and unpolarized photons with the maximum beam energy up to 883 MeV.
- The data will be used to obtain the magnetic dipole moment of the Δ(1242), study medium modification effects, obtain new information on the properties of P₁₁(1440) and S₁₁(1535) and much more. Analysis of the data is in progress.
- Among other results, about 30 M η were produced. The sample will be used to determine the slope parameter of the $\eta \rightarrow 3\pi^0$ Dalitz plot, measure the branching ratio and determine the matrix element of the $\eta \rightarrow \pi^0 \gamma \gamma$ decay, set new upper limits for *C* and *CP* forbidden η decays.
- The second set of experiments utilizes the upgraded MAMI-C 1.5 GeV beam. The program will continue most of the MAMI-B topics at higher energies. New experiments will be started as well, in particular measurements with polarized and double polarized observables.

A B > 4
 B > 4
 B