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Motivation

We present results of the coupled-channel analysis of data

on processes ππ → ππ, KK, ηη, ηη′ in the channels with

IGJP C = 0+0++ and 0+2++ and on the ππ scattering in

the channel with 1+1−−. The scalar sector is problematic

up to now especially due to an assignment of the

discovered mesonic states to quark-model configurations in

spite of a big amount of work devoted to these problems

(see, e.g., V.V.Anisovich, IJMP A 21, 3615 (2006) and references

therein). An exceptional interest to this sector is

supported by the fact that there, possibly indeed, we deal

with a glueball f0(1500) (see, e.g., C.Amsler, F.E.Close, PR D

53, 295 (1996); W.-M. Yao et al. (PDG), J.Phys. G 33 (2006) 1.).



The investigation of vector mesons is up-to-date subject

due to their role in forming the electromagnetic structure

of particles and because our knowledge about these

mesons is still too incomplete (e.g., in the PDG issue the

masses of ρ(1450) is ranging from 1250 to 1582 MeV, and

it is forρ(1450) a quoted averaged total width of only 147

MeV!)

The ππ interaction plays a central role in physics of

strongly interacting particles and, therefore, it has always

been an object of continuous investigation: I. Caprini,

G. Colangelo, and H. Leutwyler, IJMP A 21 (2006) 954; R. Kaminski,

J.R. Pelaez, and F.J. Yndurain, PR D 74 (2006) 014001; Erratum-ibid.

D 74 (2006) 079903; A.A. Osipov, A.E. Radzhabov, and M.K. Volkov,

arXiv: hep-ph/0603130; V. Bernard, A.A. Osipov, and U.G. Meissner,

PL B285 (1992) 119.



In the tensor sector, the nine states (f2(1430), f2(1565),

f2(1640), f2(1810), f2(1910), f2(2000), f2(2020), f2(2150),

f2(2220)) must be confirmed in various experiments and

analyses.

In the analysis of pp → ππ, ηη, ηη′, five resonances –

f2(1920), f2(2000), f2(2020), f2(2240) and f2(2300) – have

been obtained, one of which (f2(2000)) is a candidate for

the glueball (V.V.Anisovich et al., IJMP A 20, 6327 (2005)).



Method of analysis

We analysed experimental data using both

a model-independent method based only on the analyticity and

unitarity (D.Krupa, V.A.Meshcheryakov, Yu.S.Surovtsev, NC A 109,

281 (1996)) and multichannel Breit–Wigner forms. In both

methods, we parametrized the S-matrix elements Sαβ

(α, β = 1(ππ), 2(KK), 3(ηη or ηη′)) using

the Le Couteur-Newton relations (K.J.LeCouteur,

Proc.Roy.Soc. A 256, 115 (1960); R.G.Newton, J.Math.Phys. 2, 188

(1961); M.Kato, Ann.Phys. 31, 130 (1965)). They express the

S-matrix elements of all coupled processes in terms of the

Jost matrix determinant d(k1, · · · , kn) that is a real

analytic function with the only square-root branch-points

at channel momenta kα = 0.



Our model-independent method which essentially utilizes

an uniformizing variable can be used only for the

2-channel case and under some conditions for the

3-channel one. Only in these cases we obtain a simple

symmetric (easily interpreted) picture of the resonance

poles and zeros of the S-matrix on an uniformization

plane. The important branch points, corresponding to the

thresholds of the coupled channels and to the crossing

ones, are taken into account in the uniformizing variable.

A resonance is represented by three and seven types pair

of complex-conjugate clusters (of poles and zeros on the

Riemann surface) in the 2- and 3-channel cases,

respectively (D.Krupa et al., NC A 109, 281 (1996)). The cluster

kind is related to the nature of state.



Analysis of the isoscalar-scalar sector

Considering the S-waves of processes

ππ → ππ, KK, ηη, ηη′

in the model-independent approach, we performed 2

variants of the 3-channel analysis.

Variant I: A combined analysis of ππ → ππ, KK, ηη.

Variant II: Analysis of ππ → ππ, KK, ηη′.

Influence of the ηη′-channel in the I case and of ηη in the

II one are taken into account in the background.

Here the left-hand cuts are neglected in the

Riemann-surface structure, and contributions on these

cuts are taken into account also in the background.



Under neglecting the ππ-threshold branch point (however,

unitarity on the ππ-cut is taken into account), the

uniformizing variable is:

w =
k2 + k3

√

m2
η − m2

K

for variant I,

and

w′ =
k′
2 + k′

3
√

1
4
(mη + mη′)2 − m2

K

for variant II.

All, related to variant II, is marked by prime.

On the w-plane, the Le Couteur-Newton relations are

S11 =
d∗(−w∗)

d(w)
, S22 =

d(−w−1)

d(w)
, S33 =

d(w−1)

d(w)
,

S11S22−S2
12 =

d∗(w∗−1)

d(w)
, S11S33−S2

13 =
d∗(−w∗−1)

d(w)
.



d = dBdres, dres(w) = w− M
2

M
∏

r=1

(w + w∗
r)

M is the number of resonance zeros.

dB = exp[−i

3
∑

n=1

kn

mn

(αn + iβn)],

αn = an1 + anσ

s − sσ

sσ

θ(s − sσ) + anv

s − sv

sv

θ(s − sv),

βn = bn1 + bnσ

s − sσ

sσ

θ(s − sσ) + bnv

s − sv

sv

θ(s − sv).

sσ – the σσ threshold; sv – the combined threshold of

many opening channels in the range of ∼ 1.5 GeV

(ηη′, ρρ, ωω).

In variant II (the uniformizing variable w′),

a′
nη

s − 4m2
η

4m2
η

θ(s − 4m2
η) and b′

nη

s − 4m2
η

4m2
η

θ(s − 4m2
η)

should be added to α′
n and β′

n.



The ππ scattering data from the threshold to 1.89 GeV

are taken from: B.Hyams et al., NP B 64, 134 (1973); ibid. 100,

205 (1975); A.Zylbersztejn et al., PL B 38, 457 (1972); P.Sonderegger,

P.Bonamy, in Proc. 5th Intern. Conf. on Elem. Part., Lund, 1969,

paper 372; J.R.Bensinger et al., PL B 36, 134 (1971); J.P.Baton et al.,

PL B 33, 525, 528 (1970); P.Baillon et al., PL B 38, 555 (1972);

L.Rosselet et al., PR D 15, 574 (1977); A.A.Kartamyshev et al., Pis’ma

v ZhETF 25, 68 (1977); A.A. Bel’kov et al., Pis’ma v ZhETF 29, 652

(1979). For ππ → KK, practically all the accessible data

are used: W.Wetzel et al., NP B 115, 208 (1976); V.A.Polychronakos

et al., PR D 19, 1317 (1979); P.Estabrooks, PR D 19, 2678 (1979);

D.Cohen et al., PR D 22, 2595 (1980); G.Costa et al., NP B 175, 402

(1980); A.Etkin et al., PR D 25, 1786 (1982).

For ππ → ηη, we used data for |S13|2 from the threshold

to 1.72 GeV (F.Binon et al., NC A 78, 313 (1983)).

For ππ → ηη′, the data for |S13|2 from the threshold to

1.813 GeV are taken from (F. Binon et al., NC A 80, 363

(1984)).

We included all 5 resonances discussed below 1.9 GeV.



In variant I, we got satisfactory description: for the ππ

scattering, χ2/NDF ≈ 1.35; for ππ → KK,

χ2/NDF ≈ 1.77; for ππ → ηη, χ2/N.exp.points ≈ 0.86.

The total χ2/NDF is 345.603/(301 − 40) ≈ 1.32.

The background parameters are: a11 = 0.2006, a1σ = 0.0146,

a1v = 0, b11 = 0, b1σ = −0.01025, b1v = 0.0542, a21 = −0.6986,

a2σ = −1.4207, a2v = −5.958, b21 = 0.047, b2σ = 0,

b2v = 6.888, b31 = 0.6511, b3σ = 0.3404, b3v = 0;

sσ = 1.638 GeV2, sv = 2.084 GeV2.

In variant II, we got description: For the ππ scattering

χ2/NDF ≈ 1.0! for ππ → KK χ2/NDF ≈ 1.62;

for ππ → ηη′ χ2/N.exp.points ≈ 0.36. The total χ2/NDF

is 282.682/(293 − 38) ≈ 1.11!

The background parameters are: a′
11 = 0.0111, a′

1η = −0.058,

a′
1σ = 0, a′

1v = 0.0954, b′
11 = b′

1η = b′
1σ = 0, b′

1v = 0.047,

a′
21 = −3.439, a′

2η = −0.4851, a′
2σ = 1.7622, a′

2v = −5.158,

b′
21 = 0, b′

2η = −0.7524, b′
2σ = 2.6658, b′

2v = 1.836, b′
31 = 0.5545,

sσ = 1.638 GeV2, sv = 2.126 GeV2.
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Figure 1: The phase shift and module of the ππ-scattering

S-wave matrix element. The solid curve – variant I; the

dashed curve – variant II.
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Figure 2: The phase shift and module of the ππ → KK

S-wave matrix element. The solid curve – variant I; the

dashed curve – variant II.
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Figure 3: The squared modules of the ππ → ηη (upper fig-

ure) and ππ → ηη′ (lower figure ) S-wave matrix elements.



Let us indicate the obtained pole clusters for resonances

on 8 sheets of the complex energy plane
√

s, on which the

3-channel S-matrix is determined.
√

sr = Er + iΓr

Table 1: Pole clusters for the f0-resonances in variant I.

Sheet II III IV V VI VII VIII

f0(600) Er 598.2±13 585.8±14 505.8±16 518.2±15

Γr 583±18 583±18 583±18 583±18

f0(980) Er 1013.1±4 983.6±9

Γr 34.1±6 57.4±10

f0(1370) Er 1398.2±16 1398.2±18 1398.2±18 1398.2±13

Γr 287.4±17 270.6±15 155±9 171.8±7

f0(1500) Er 1502.6±11 1479.5±13 1502.6±12 1496.7±12 1498±16 1496.8±12 1502.6±10

Γr 357.1±15 139.4±12 238.7±13 139.9±14 191.2±17 87.36±11 356.5±14

f0(1710) Er 1708.2±12 1708.2±10 1708.2±13 1708.2±15

Γr 142.3±9 160.3±8 323.3±14 305.3±13

The f0(1370) and f0(1710) are represented by the pole

clusters corresponding to states with the dominant ss̄

component; f0(1500), with the dominant glueball

component.



Table 2: Pole clusters for the f0-resonances in variant II.

Sheet II III IV V VI VII VIII

f0(600) Er 616.5±8 621.8±10 598.3±11 593±12

Γr 563±11 563±12 563±14 563±13

f0(980) Er 1009.3±3 986±6

Γr 32±4 58±5.5

f0(1370) Er 1394.3±9 1394.3±11 1412.7±13 1412.7±14

Γr 236.3±10 255.7±12 255.7±12 236.3±19

f0(1500) Er 1498.3±11 1502.4±9 1498.3±12 1498.3±13 1494.6±11 1498.3±14

Γr 198.8±14 236.8±11 193±9 198.8±11 194±8 193±10

f0(1710) Er 1726.1±12 1726.1±13 1726.1±12 1726.1±10

Γr 140.2±9 111.6±8 84.2±8 112.8±7

Note a surprising result obtained for the f0(980). This

state lies slightly above the KK threshold and is described

by the pole on sheet II and by the shifted pole on sheet

III under the ηη threshold without the corresponding

poles on sheets VI and VII, as it was expected for

standard clusters. This corresponds to the description of

the ηη bound state.



Masses and widths of states should be calculated from the

pole positions.

T res =
√

sΓel/(m2
res − s − i

√
sΓtot)

Table 3: Masses and total widths of the f0-resonances (in MeV).

Variant I Variant II

State mres Γtot mres Γtot

f0(600) 835.3 1166 834.9 1126

f0(980) 1013.7 68.2 1009.8 64

f0(1370) 1408.7 343.6 1417.5 511

f0(1500) 1544 714 1511.4 398

f0(1710) 1715.7 321 1729.8 225.6



Analysis of the isovector P -wave of ππ
scattering

In this sector we applied both the model-independent method

and multichannel Breit–Wigner forms.

We analyzed data: S.D. Protopopescu et al., PR D 7, 1279 (1973);

B. Hyams et al., NP B 64, 134 (1973); P. Estabrooks and A.D. Martin,

NP B 79, 301 (1974), for the inelasticity parameter (η) and

phase shift of the ππ-scattering amplitude (δ)

(S(ππ → ππ) = η exp(2iδ)).

We introduced three (ρ(770), ρ(1250) and ρ(1550 − 1780)),

four (the indicated ones plus ρ(1860 − 1910)) and five (the

indicated four plus ρ(1450)) resonances.



THE MODEL-INDEPENDENT ANALYSIS

Since in data for the P -wave ππ scattering a deviation

from elasticity is observed in the near-threshold region of

the ωπ channel, we considered explicitly the thresholds of

the ππ and ωπ channels and the left-hand one at s = 0 in

the uniformizing variable:

v =
(mω + mπ0)/2

√

s − 4m2
π+ + mπ+

√

s − (mω + mπ0)2

√

s
[

((mω + mπ0)/2)
2 − m2

π+

]

Influence of other channels which couple to the ππ one is

supposed to be taken into account via the background.

The resonance part of the 2-channel S-matrix element of

ππ-scattering Sres has no cuts on the v-plane.

Sres =
d(−v−1)

d(v)
,

where d(v) represents the contribution of resonances.



Other authors have also used the parameterizations with the

Jost functions in analyzing the s-wave ππ scattering in the

one-channel approach (J. Bohacik, H. Kühnelt, PR D 21 (1980)

1342) and in the two-channel one (D. Morgan, M.R. Pennington,

PR D 48 (1993) 1185).

Sbg = exp






2i





√

s − 4m2
π+

s





3
(

α0 + α1

s − s1

s
θ(s − s1)+

α2

s − s2

s
θ(s − s2)

)]

,

where αi = ai + ibi, s1 is the threshold of 4π channel

noticeable in the ρ-like meson decays and s2 is the

threshold of ρ2π channel. Due to allowing for the left-hand

branch-point at s = 0 in the v-variable, a0 = b0 = 0.

Furthermore, b1 = 0 which is related to the experimental

fact that the P -wave ππ scattering is elastic also above the

4π-channel threshold up to about the ωπ0 threshold.
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We obtained the satisfactory description with the total

χ2/NDF equal to 291.76/(183 − 15) = 1.74,

278.50/(183 − 19) = 1.70 and 266.14/(183 − 23) = 1.66 for

the case of three, four and five resonances, respectively.

The background parameters are: a1 = 0.0093 ± 0.0199,

a2 = 0.0618 ± 0.0305 and b2 = −0.0135 ± 0.0371 for the

three-resonance, a1 = 0.0017 ± 0.2118,

a2 = 0.0433 ± 0.3552 and b2 = −0.0044 ± 0.4782 for the

four-resonance, and a1 = 0.0256 ± 0.0186,

a2 = 0.0922 ± 0.0335 and b2 = 0.0011 ± 0.0478 for the

five-resonance descriptions. The positive sign of b2 in the

last case is more natural from the physical point of view.



Though the description can be considered, practically, as

the same in all three cases, careful comparison of the

obtained parameters and energy dependence of the fitted

quantities suggests that the resonance ρ(1900) is desired

and that the ρ(1450) might be also included improving

slightly the description (at all events, its existence does

not contradict to the data).

In Table: Pole clusters of the ρ-like states on the lower√
s-half-plane (in MeV) (the conjugate poles on the upper

half-plane are not shown).

II III IV

ρ(770) 765.8 ± 0.6 − i(73.3 ± 0.4) 778.2 ± 9.1 − i(68.9 ± 3.9)

ρ(1250) 1251.4 ± 11.3 − i(130.9 ± 9.1) 1251 ± 11.1 − i(130.5 ± 9.2)

ρ(1470) 1469.4 ± 10.6 − i(91 ± 12.9) 1465.4 ± 12.1 − i(99.8 ± 15.6)

ρ(1600) 1634 ± 20.1 − i(144.7 ± 23.8) 1592.9 ± 7.9 − i(73.7 ± 11.7)

ρ(1900) 1882.8 ± 24.8 − i(112.4 ± 25.2) 1893 ± 21.9 − i(93.4 ± 19.9)



Masses and total widths of the obtained ρ-states can be

calculated from the pole positions on sheets II and IV.

mres Γtot

ρ(770) 769.3±0.6 146.6±0.9

ρ(1250) 1257.8±11.1 261±18.3

ρ(1470) 1468.8±12.1 199.6±31.2

ρ(1600) 1594.6±8 147.4±23.4

ρ(1900) 1895.3±21.9 186.8±39.8



THE BREIT–WIGNER ANALYSIS

We used 5-channel Breit–Wigner forms in constructing

the Jost matrix determinant d(k1, · · · , k5). The resonance

poles and zeros in the S-matrix are generated utilizing the

Le Couteur–Newton relation

S11 =
d(−k1, · · · , k5)

d(k1, · · · , k5)
,

where k1, k2, k3, k4 and k5 are the momenta of ππ,

π+π−2π0, 2π+2π−, η2π, and ωπ0 channels, respectively.

d = dresdbg

dres(s) =
∏

r



M2
r − s − i

5
∑

j=1

ρ3
rj Rrj f2

rj



 ,

where ρrj = kj(s)/kj(M
2
r ), f2

rj/Mr is the partial width of

a resonance with mass Mr, and Rrj is a Blatt–Weisskopf

barrier factor.



We took fr2 = fr3/
√

2 that is well justified with a 5-10%

accuracy, for example, by calculations of the ρ0-meson

decays in some variant of the chiral model (N.N. Achasov,

A.A. Kozhevnikov, PR D 71 (2005) 034015).

The background part dbg is

dbg = exp






−i





√

s − 4m2
π+

s





3
(

α0 + α1

s − s1

s
θ(s − s1)

)






,

where αi = ai + ibi and s1 is the threshold of ρ2π channel.

We obtained equally reasonable description in all three

cases: the total χ2/NDF = 316.21/(183 − 17) = 1.87,

314.69/(183 − 22) = 1.92, and 303.10/(183 − 27) = 1.91 for

the case of three, four, and five resonances, respectively.
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The ρ-like resonance parameters (all in MeV).

State ρ(770) ρ(1250) ρ(1450) ρ(1600) ρ(1900)

M 777.69±0.32 1249.8±15.6 1449.9±12.2 1587.3±4.5 1897.8±38

fr1 343.8±0.73 87.7±7.4 56.9±5.4 248.2±5.2 47.3±12

fr2 24.6±5.8 186.3±39.9 100.1±18.7 240.2±8.6 73.7

fr3 34.8±8.2 263.5±56.5 141.6±26.5 339.7±12.5 104.3

fr4 231.8±111 141.2±98 141.8±33 9

fr5 231±115 150±95 108.6±40.4 10

Γtot ≈154.3 >175 >52 >168 >10

The background parameters are: a0 = −0.00121 ± 0.0018,

a1 = −0.1005 ± 0.011 and b1 = 0.0012 ± 0.006.



In order to look at consistency of the description, we

checked if the obtained formula for the ππ-scattering

amplitude gives a value of the scattering length consistent

with the results of other approaches.

a1
1[10

−3m
−3

π+
] References Remarks

33.9 ± 2.02 This paper Breit–Wigner analysis

34 V. Bernard et al., PL B285 (1992) 119. Local NJL model

37 A.A. Osipov et al, arXiv:hep-ph/0603130. Non-local NJL model

37.9 ± 0.5 I. Caprini et al., IJMP A 21 (2006) 954. Roy equations using ChPT

39.6 ± 2.4 R. Kamiński et al., PL B551 (2003) 241. Roy equations

38.4 ± 0.8 J.R. Peláez et al., PR D 71 (2005) 074016. Forward dispersion relations



Analysis of isoscalar-tensor sector

In analysis of the processes ππ → ππ, KK, ηη, we

considered explicitly also the channel (2π)(2π). Here it is

impossible to use the uniformizing-variable method.

Therefore, using the Le Couteur-Newton relations, we

generate the resonance poles by some 4-channel

Breit-Wigner forms.

d(k1, k2, k3, k4) is taken as d = dBdres.

dres(s) =
∏

r



M2
r − s − i

4
∑

j=1

ρ5
rjRrjf

2
rj





where ρrj = 2ki/
√

M2
r − 4m2

j , f2
rj/Mr is the partial width.



dB = exp

[

−i
3

∑

n=1

(

2kn√
s

)5

(an + ibn)

]

.

a1 = α11+
s − 4m2

K

s
α12 θ(s−4m2

K)+
s − sv

s
α10 θ(s−sv)),

bn = βn +
s − sv

s
γn θ(s − sv).

sv ≈ 2.274 GeV2 is the combined threshold of channels

ηη′, ρρ, ωω.

The data for the ππ scattering are taken from an

energy-independent analysis by B.Hyams et al. (NP B 64,

134 (1973); ibid. 100,205 (1975)).

The data for ππ → KK, ηη are taken from works

(S.J.Lindenbaum, R.S.Longacre, PL B 274, 492 (1992); R.S.Longacre et

al., PL B 177, 223 (1986)).



We obtained a satisfactory description with ten resonance

f2(1270), f2(1430), f ′
2(1525), f2(1580), f2(1730), f2(1810),

f2(1960), f2(2000), f2(2240) and f2(2410) (the total

χ2/NDF = 161.147/(168 − 65) ≈ 1.56) and with eleven

states adding one more resonance f2(2020) which is

needed in the combined analysis of processes

pp → ππ, ηη, ηη′ (V.V.Anisovich et al., IJMP A 20, 6327 (2005)).

Description in the latter case is practically the same one

as in the case of ten resonances:

the total χ2/NDF = 156.617/(168 − 69) ≈ 1.58.



The resonance parameters for ten states (in MeV).

State M fr1 fr2 fr3 fr4 Γtot

f2(1270) 1275.3±1.8 470.8±5.4 201.5±11.4 90.4±4.76 22.4±4.6 ≈212

f2(1430) 1450.8±18.7 128.3±45.9 562.3±142 32.7±18.4 8.2±65 >230

f ′
2(1525) 1535±8.6 28.6±8.3 253.8±78 92.6±11.5 41.6±160 >49

f2(1565) 1601.4±27.5 75.5±19.4 315±48.6 388.9±27.7 127±199 >170

f2(1730) 1723.4±5.7 78.8±43 289.5±62.4 460.3±54.6 107.6±76.7 >182

f2(1810) 1761.8±15.3 129.5±14.4 259±30.7 469.7±22.5 90.3±90 >177

f2(1960) 1962.8±29.3 132.6±22.4 333±61.3 319±42.6 65.4±94 >119

f2(2000) 2017±21.6 143.5±23.3 614±92.6 58.8±24 450.4±221 >299

f2(2240) 2207±44.8 136.4±32.2 551±149 375±114 166.8±104 >222

f2(2410) 2429±31.6 177±47.2 411±196.9 4.5±70.8 460.8±209 >170

For the background : α11 = −0.07805, α12 = 0.03445,

α10 = −0.2295, β1 = −0.0715, γ1 = −0.04165,

β2 = −0.981, γ2 = 0.736, β3 = −0.5309, γ3 = 0.8223.



The resonance parameters for eleven states.

State M fr1 fr2 fr3 fr4 Γtot

f2(1270) 1276.3±1.8 468.9±5.5 201.6±11.6 89.9±4.79 7.2±4.6 ≈210.5

f2(1430) 1450.5±18.8 128.3±45.9 562.3±144 32.7±18.6 8.2±63 >230

f ′
2(1525) 1534.7±8.6 28.5±8.5 253.9±79 89.5±12.5 51.6±155 >49.5

f2(1565) 1601.5±27.9 75.5±19.6 315±50.6 388.9±28.6 127±190 >170

f2(1730) 1719.8±6.2 78.8±43 289.5±62.6 460.3±545. 108.6±76. >182.4

f2(1810) 1760±17.6 129.5±14.8 259±32. 469.7±25.2 90.3±89.5 >177.6

f2(1960) 1962.2±29.8 132.6±23.3 331±61.5 319±42.8 62.4±91.3 >118.6

f2(2000) 2006±22.7 155.7±24.4 169.5±95.3 60.4±26.7 574.8±211 >193

f2(2020) 2027±25.6 50.4±24.8 441±196.7 58±50.8 128±190 >107

f2(2240) 2202±45.4 133.4±32.6 545±150.4 381±116 168.8±103 >222

f2(2410) 2387±33.3 175±48.3 395±197.7 24.5±68.5 462.8±211 >168

The background parameters are: α11 = −0.0755,

α12 = 0.0225, α10 = −0.2344, β1 = −0.0782,

γ1 = −0.05215, β2 = −0.985, γ2 = 0.7494, β3 = −0.5162,

γ3 = 0.786.
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Spectroscopic implications from

the analysis

• In the combined model-independent analysis of data

on the ππ → ππ, KK, ηη, ηη′ processes in the channel

with IGJP C = 0+0++, an additional confirmation of

the σ-meson with mass 835 MeV is obtained. This

value rather accords with prediction (mσ ≈ mρ) on the

basis of mended symmetry by S. Weinberg (PRL 65,

1177 (1990)).

• Indication for f0(980) to be the ηη bound state is

obtained. From the point of view of quark structure,

this is the 4-quark state. Maybe, this is consistent

somehow with arguments in favour of the 4-quark

nature of f0(980) (N.N.Achasov, NP A 675, 279c (2000);

M.N.Achasov et al., PL B 438, 441 (1998); ibid. 440, 442 (1998)).



• The f0(1370) and f0(1710) have the dominant ss̄

component. Conclusion about the f0(1370) agrees

quite well with the one drawn by the Crystal Barrel

Collaboration (C.Amsler et al., PL B 355, 425 (1995)) where

the f0(1370) is identified as ηη resonance in the π0ηη

final state of the p̄p annihilation at rest. Conclusion

about the f0(1710) is quite consistent with the

experimental facts that this state is observed in

γγ → KSK̄S (S.Braccini, Proc. Workshop on Hadron

Spectroscopy, Frascati Phys. Series XV, 53 (1999)) and not

observed in γγ → π+π− (R.Barate et al., PL B 472, 189

(2000)).

• As to the f0(1500), we suppose that it is practically

the eighth component of octet mixed with a glueball

being dominant in this state. Its biggest width among

enclosing states tells also in behalf of its glueball

nature (V.V.Anisovich et al., NP Proc.Suppl. A56, 270 (1997)).



• The assignment of scalar mesons to lower nonets,

excluding the f0(980) as the ηη bound state.

The ground nonet: the isovector a0(980), the

isodoublet K∗
0(900), and f0(600) and f0(1370) as

mixtures of the 8th component of octet and the SU(3)

singlet. The Gell-Mann–Okubo (GM-O) formula

3m2
f8

= 4m2
K∗

0
− m2

a0

gives mf8
= 872 MeV. (mσ = 835 ± 14 MeV).

In relation for masses of nonet mσ + mf0(1370) = 2mK∗
0

the left side is about 25 % bigger than the right one.

The next nonet: a0(1450), K∗
0(1450), and f0(1500) and

f0(1710). From the GM-O formula, mf8
≈ 1450 MeV.

In: mf0(1500) + mf0(1710) = 2mK∗
0 (1450)

the left side is about 12 % bigger than the right one.

Now an adequate mixing scheme should be found.



• In the vector sector, the first ρ-like meson has the

mass 1257.8±11 MeV in the model-independent

analysis and 1249.8±15.6 MeV in the Breit–Wigner

one. These values differ significantly from the mass

(1459±11 MeV) of the first ρ-like meson cited in the

PDG tables of 2006. The ρ(1250) meson was discussed

actively some time ago (N.M. Budnev et al., PL B70 (1977)

365; S.B. Gerasimov, d A.B. Govorkov, Z. Phys. C 13 (1982) 43;

ibid., 29 (1985) 61) and later the evidence for its

existence was obtained in (D. Aston et al., NP Proc. Suppl.

B21 (1991) 105; T.S. Belozerova, V.K. Henner, Phys. Elem. Part.

Atom. Nucl. 29, part 1 (1998) 148; Yu.S. Surovtsev, P. Bydžovský,

arXiv:hep-ph/0701274, to be published in Frascati Physics Series,

Volume XLVI (2007); I. Yamauchi, T. Komada, Talk at the XII Int.

Conf. on Hadron Spectroscopy - Hadron07, to be published in

Frascati Physics Series, Volume XLVI (2007)).



• If the ρ(1250) is interpreted as the first radial

excitation of the 1+1−− qq̄ state, then it lies down well

on the corresponding linear trajectory with an

universal slope on the (n, M2) plane (n is the radial

quantum number of the qq̄ state) (A.V. Anisovich et al.,

PR D 62 (2000) 051502), whereas the ρ(1450) turns out to

be considerably higher than this trajectory. The

ρ(1250) and the isodoublet K∗(1410) are well located

to the octet of first radial excitations. The mass of the

latter should be by about 150 MeV larger than the

mass of the former. Then the GM-O formula

3m2
ω′

8
= 4m2

K∗′ − m2
ρ′

gives the value mω′
8

= 1460 MeV, that is fairly good

compatible with the mass of the first ω-like meson

ω(1420), for which one obtains the values in range

1350-1460 MeV (PDG 2006).



• Existence of the ρ(1450) (along with ρ(1250)) does not

contradict to the data. In the qq̄ picture, it might be

the first 3D1 state with, possibly, the isodoublet

K∗(1680) in the corresponding octet. From the GM-O

formula, we should obtain the value 1750 MeV for the

mass of the eighth component of this octet. This

corresponds to one of the observations of the second

ω-like meson with masses from 1606 to 1840 MeV that

is cited in the PDG tables under the ω(1650).

• The third ρ-like meson has the mass about 1600 MeV

rather than 1720 MeV cited in the PDG tables.

• As to the ρ(1900), in this energy region there are

practically no data on the P -wave of ππ scattering.

The model-independent analysis testifies in favour of

existence of this state, whereas the Breit–Wigner

analysis gives the same description with and without

the ρ(1900).



• The suggested picture for the first two ρ-like mesons is

consistent with predictions of the quark model

(E. van Beveren et al., PR D 27 (1983) 1527). In

(S.B. Gerasimov, d A.B. Govorkov, Z. Phys. C 13 (1982) 43; ibid.,

29 (1985) 61) the discussed mass spectrum for radially

excited ρ- and K∗-mesons was obtained using rather

simple mass operator. If the existence of the ρ(1250) is

confirmed, some quark potential models, e.g., in

(S. Godfrey, N. Isgur, PR D 32 (1985) 189), will require

substantial revisions, because the first ρ-like meson is

usually predicted about 200 MeV higher than this

state. To the point, the first K∗-like meson is obtained

in the indicated quark model at 1580 MeV, whereas

the corresponding very well established resonance has

the mass of only 1410 MeV.



• As to the tensor sector, we carried out two analysis –

without and with the f2(2020). We do not obtain

f2(1640), f2(1910) and f2(2150), however, we see

f2(1450) and f2(1730) which are related to the

statistically-valued experimental points.

• Usually one assigns to the ground tensor nonet the

states f2(1270) and f ′
2(1525). To the 2nd nonet, one

could assign f2(1600) and f2(1760) though for now the

isodoublet member is not discovered. If a2(1730) is the

isovector of this octet and if f2(1600) is almost its 8th

component, then, from the GM-O formula, we expect

this isodoublet mass at about 1633 MeV. Then the

relation for masses of nonet would be fulfilled with a

3% accuracy. V.M.Karnaukhov et al. (Yad.Fiz. 63, 652

(2000)) observed the strange isodoublet with yet

indefinite remaining quantum numbers and with mass

1629 ± 7 MeV in the mode K0
s π+π−. This state might

be the tensor isodoublet of the 2nd nonet.



• The states f2(1963) and f2(2207) together with the

isodoublet K∗
2(1980) could be put into the third nonet.

Then in the relation for masses of nonet

Mf2(1963) + Mf2(2207) = 2MK∗
2 (1980),

the left-hand side is only 5.3 % bigger than the

right-hand one.

If one consider f2(1963) as the eighth component of

octet, the GM-O formula

M2
a2

= 4M2
K∗

2 (1980) − 3M2
f2(1963)

gives Ma2
= 2030 MeV. This value coincides with the

one for a2-meson obtained in works: A.V.Anisovich et al.,

PL B 452, 173 (1999); ibid., 452, 187 (1999); ibid., 517, 261

(2001).. This state is interpreted as a second radial

excitation of the 1−2++-state on the basis of

consideration of the a2 trajectory on the (n, M2) plane

(V.V.Anisovich et al.. IJMP A 20, 6327 (2005)).



• As to f2(2000), the presence of the f2(2020) in the

analysis with eleven resonances helps to interpret

f2(2000) as the glueball. In the case of ten resonances,

the ratio of the ππ and ηη widths is in the limits

obtained in Ref.(V.V.Anisovich et al., IJMP A 20, 6327

(2005)) for the tensor glueball on the basis of the

1/N-expantion rules. However, the KK width is too

large for the glueball. At practically the same

description of processes with the consideration of

eleven resonances as in the case of ten, their

parameters have varied a little, except for the ones for

f2(2000) and f2(2410). Mass of the latter has

decreased by about 40 MeV. As to f2(2000), its KK

width has changed significantly. Now all the obtained

ratios of the partial widths are in the limits

corresponding to the glueball.

• The question of interpretation of the f2(1450),

f2(1730), f2(2020) and f2(2410) is open.



APPENDIXES

The S-matrix is determined on the 4- and 8-sheeted

Riemann surfaces for the 2- and 3-channel cases,

respectively. The matrix elements Sαβ, where

α, β = 1, 2, 3 denote channels, have the right-hand cuts

along the real axis of the s complex plane (s is the

invariant total energy squared), starting with si

(i = 1, 2, 3), and the left-hand cuts.



The Riemann-surface sheets are numbered according to

the signs of analytic continuations of the channel momenta

ki =
√

s − si/2 (i = 1, 2, 3) as follows:

I II III IV V VI VII VIII

Imk1 + − − + + − − +

Imk2 + + − − − − + +

Imk3 + + + + − − − −
The resonance representations on the Riemann surfaces

are obtained with the help of formulas from (KMS, 96)),

expressing analytic continuations of the matrix elements

to unphysical sheets in terms of those on sheet I that have

only the resonances zeros (beyond the real axis), at least,

around the physical region.

In the 2-channel case, we obtain 3 types of resonances

described by a pair of conjugate zeros on sheet I: (a) in

S11, (b) in S22, (c) in each of S11 and S22.



In the 3-channel case, we obtain 7 types of resonances

corresponding to 7 possible situations when there are

resonance zeros on sheet I only in S11 – (a); S22 – (b);

S33 – (c); S11 and S22 – (d); S22 and S33 – (e); S11

and S33 – (f); S11, S22, and S33 – (g).

A resonance of every type is represented by a pair of

complex-conjugate clusters (of poles and zeros on the

Riemann surface). Note that whereas cases (a), (b) and (c)

can be simply related to the representation of resonances

by Breit-Wigner forms, cases (d), (e), (f) and (g)

practically are lost at that description. The cluster kind is

related to the nature of state. For example, if we consider

the ππ, KK and ηη channels, then a resonance, coupled

relatively more strongly to the ππ channel than to the

KK and ηη ones is described by the cluster of type (a). If

the resonance is coupled more strongly to the KK and ηη

channels than to the ππ, it is represented by the cluster of

type (e) (say, the state with the dominant ss̄ component).



The flavour singlet (e.g., glueball) must be represented by

the cluster of type (g) (of type (c) in the 2-channel

consideration) as a necessary condition for the ideal case, if

this state lies above the thresholds of considered channels.

We can distinguish, in a model-independent way, a bound

state of colourless particles (e.g., KK molecule) and a qq̄

bound state. Just as in the 1-channel case, the existence

of the particle bound-state means the presence of a pole

on the real axis under the threshold on the physical sheet,

so in the 2-channel case, the existence of the particle

bound-state in channel 2 (KK molecule) that, however,

can decay into channel 1 (ππ decay), would imply the

presence of a pair of complex conjugate poles on sheet II

under the second-channel threshold without the

corresponding shifted pair of poles on sheet III.



In the 3-channel case, the bound-state in channel 3 (ηη)

that, however, can decay into channels 1 (ππ decay) and 2

(KK decay), is represented by the pair of complex

conjugate poles on sheet II and by a shifted poles on sheet

III under the ηη threshold without the corresponding

poles on sheets VI and VII. This test

(D. Morgan, M.R. Pennington, PR D 48, 1185 (1993); KMS, 96)

is the multichannel analogue of the known

Castillejo–Dalitz–Dyson poles in the one-channel case.

According to this test, earlier in (KMS, 96)), the

interpretation of the f0(980) state as the KK molecule

has been rejected because this state is represented by the

cluster of type (a) in the 2-channel analysis of processes

ππ → ππ, KK.



We use the Le Couteur-Newton relations (K.J.LeCouteur,

Proc.Roy.Soc. A 256, 115 (1960); R.G.Newton, J.Math.Phys. 2, 188

(1961); M.Kato, Ann.Phys. 31, 130 (1965)). They express the

S-matrix elements of all coupled processes in terms of the

Jost matrix determinant d(k1, · · · , kn) that is a real

analytic function with the only square-root branch-points

at ki = 0.

The important branch points, corresponding to the

thresholds of the coupled channels and to the crossing

ones, are taken into account in a proper uniformizing

variable.

On the uniformization plane, the pole-cluster

representation of a resonance is a good one.



the f0(600) is described by the cluster of type (a);

f0(1370), type (c); f0(1500), type (g); f0(1710), type (b);

the f0(980) is represented only by the pole on sheet II and

shifted pole on sheet III.

The combined description of processes ππ → ππ, KK, ηη′

(variant II) is even better due to the more detailed

representation of the background:

the f0(600) is described by the cluster of type (a′);

f0(1370), type (b′); f0(1500), type (d′); f0(1710), type (c′).



For subsequent conclusions, let us mention the results for
coupling constants from our previous 2-channel analysis
(Yu.S.Surovtsev, D.Krupa, M.Nagy, EPJ A 15, 409 (2002)): g1 is the
coupling constant with ππ; g2, with KK.

f0(600) f0(980) f0(1370) f0(1500)

g1, GeV 0.652 ± 0.065 0.167 ± 0.05 0.116 ± 0.03 0.657 ± 0.113

g2, GeV 0.724 ± 0.1 0.445 ± 0.031 0.99 ± 0.05 0.666 ± 0.15

The f0(980) and the f0(1370) are coupled essentially more

strongly to the KK system than to the ππ one, i.e., they

have a dominant ss̄ component. The f0(1500) has the

approximately equal coupling constants with the ππ and

KK, which apparently could point to its dominant

glueball component. In the 2-channel case, f0(1710) is

represented by the cluster corresponding to a state with

the dominant ss̄ component.



Comparison of the data for the phase shift below the KK

threshold (P. Estabrooks and A.D. Martin, NP B 79, 301 (1974))

with those of (S.D. Protopopescu et al., PR D 7, 1279 (1973);

B. Hyams et al., NP B 64, 134 (1973)) shows that the former

data are systematically by 1◦-5◦ larger than the latter,

except for two points of (S.D. Protopopescu et al.) at 710 and

730 MeV, which lie by about 2◦ higher than the

corresponding points of the former work. These two data

points were omitted in the analyses. Since we do not know

an energy dependence of the remarked deviations of the

data points, we assume a constant systematic error that

must be determined in the combined analysis of data.

This simple assumption about the constant systematic

error is the least offensive intervention to the data because

it does not change their character, nevertheless makes the

used data compatible with each other.



We have obtained the satisfactory description with

χ2/NDF and with the indicated systematic error equal

respectively to 291.76/(183 − 15) = 1.74 and

−1.97◦ ± 0.19◦ for the case of three resonances,

278.50/(183 − 19) = 1.70 and −1.90◦ ± 0.2◦ for four

resonances, and 266.14/(183 − 23) = 1.66 and

−1.87◦ ± 0.19◦ for five resonances.

Blatt–Weisskopf barrier factor conditioned by the

resonance spins. For the vector particle this factor has the

form:

Rrj =
1 + 1

4
(
√

M2
r − 4m2

j rrj)
2

1 + 1
4
(
√

s − 4m2
j rrj)2

where rrj is a radius of the j-channel decay. In our

analysis, rrj = 0.7035 fm identical for all resonances in all

channels.

a1 and b1 take into account also influence of other



channels opened at higher energies than the ρ2π

threshold. The parameter b0 is set to zero in this analysis,

similarly as in the model-independent approach.

The analysis is performed taking into account three, four,

and five resonances.



The Blatt–Weisskopf barrier factor for a tensor particle is

Rrj =
9 + 3

4
(
√

M2
r − 4m2

j rrj)
2 + 1

16
(
√

M2
r − 4m2

j rrj)
4

9 + 3
4
(
√

s − 4m2
j rrj)2 + 1

16
(
√

s − 4m2
j rrj)4

with radii of 0.943 fm for all resonances in all channels,

except for f2(1270) and f2(1960) for which they are: for

f2(1270), 1.498, 0.708 and 0.606 fm in channels ππ, KK

and ηη, for f2(1960), 0.296 fm in channel KK.

under natural assumption that the parameters of spin-spin

splitting in radial excitations as compared to the splitting

in the ground states change by a factor proportional to

the ratio of the corresponding wave functions “at zero”.



Finally we have f2(1450) and f2(1730) which are neither

qq̄ states nor glueballs. Since one predicts that masses of

the lightest qq̄g hybrids are bigger than the ones of

lightest glueballs, maybe, these states are the 4-quark

ones. Of course, assumption of this possibility presupposes

an existence of the scalar 4-quark states at lower energies

which are not seen in analysis. One can think that these

states are a part of the background due to their very large

widths.


