The experimental search for strange multi-baryonic systems in ⁴He(stopped *K*⁻, *YN*) reaction

- 1. Introduction
- 2. Experiment
- 3. A N correlations
- 4. ΣN correlations
- 5. Discussion and prospect

Takatoshi Suzuki (University of Tokyo) for KEK-PS E549 collaboration

KEK-PS E549 collaboration

H. Bhang, J. Chiba, S. Choi, Y. Fukuda, T. Hanaki,
R. S. Hayano, M. Iio, T. Ishikawa, S. Ishimoto,
T. Ishiwatari, K. Itahashi, M. Iwai, M. Iwasaki,
P. Kienle, J. H. Kim, Y. Matsuda, H. Ohnishi,
S. Okada, H. Outa, M. Sato, S. Suzuki, T. Suzuki,
D. Tomono, E. Widmann, T. Yamazaki, H. Yim

Introduction - <u>Do deeply bound kaonic nuclear states</u> with narrow widths exist ?

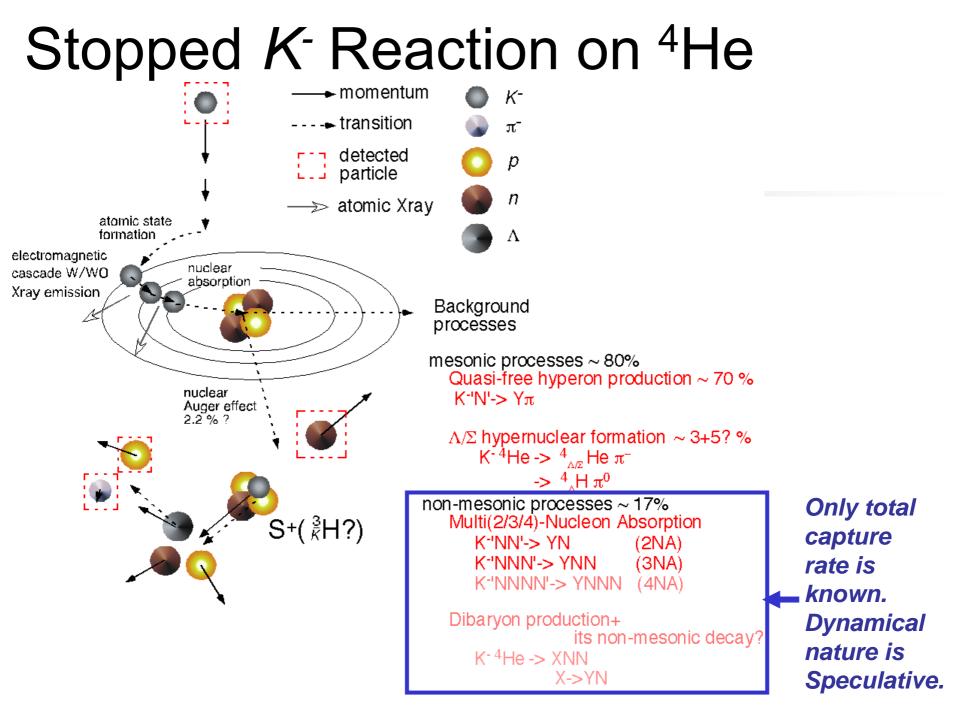
- -> No, they don't! They must be shallow and broad
- -> Yes, they do.
- 1) T. Kishimoto (PRL 83 4701 (1999))
- BNL-AGS E930 (T. Kishimoto et. al., 2001) with ¹⁶O(in-flight K⁻,n)
- -> narrow bound state(s)?(NPA 754 383c (2005))

KEK-PS E548 (T. Kishimoto et. al., 2005) with ¹⁶O(in-flight K⁻,N) -> no narrow sates !

- 2) Y. Akaishi and T. Yamazaki (PRC 65 044005 (2002), PLB 535 70 (2002))
- KEK-PS E471 (M. Iwasaki et. al., 2002/2003) with ⁴He(stopped K⁻,N)
- -> observation of "strange tribaryons" (nucl-ex/0310018,PLB 597 263 (2004))

FINUDA (T. Bressani *et. al.*, 2003/2004) with ^{6/7}Li/ ¹²C(stopped K⁻,Λp)

-> evidence for deeply bound ppK⁻ state(PRL 94 210323 (2005))

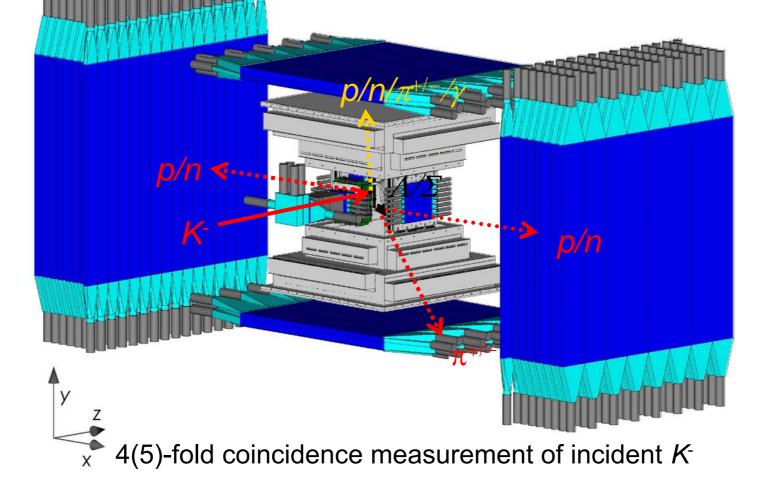

KEK-PS E549/570 (M. Iwasaki *et. al.*/R. S. Hayano *et. al.*, 2005) with ⁴He(stopped K⁻,N) -> *no narrow sates* ! (PLB 659 107 (2008)) :talk by M.Sato Broad states? -> This talk Original aim of the Experiment - Inclusive spectroscopy

(semi-)Inclusive missing mass spectroscopy of $(K_{bar}NNN)_{Z=0,T=1}$: S⁰ / $(K_{bar}NNN)_{Z=1,T=0,1}$: S⁺ via $K^{-}_{stopped}$ + ⁴He -> p + S⁰_{T=1} -> PLB 659 107: *talk by M.Sato* -> n + S⁺_{T=0,1} S⁺_{T=0,1} -> Y(π)NN Y -> π N ->H. Yim, under preparation

Very strict upper limits for $narrow(\Gamma < ~40 \text{ MeV/c}^2)$ states

Insensitive to broad (Γ > ~40 MeV/c²) states

Semi-exclusive studies from non-mesonic final states Semi-exclusive missing mass spectroscopy via This talk. $K_{\text{stopped}} + {}^{4}\text{He} \rightarrow N + {}^{3}S^{0/+}_{T=0.1}$ ${}^{3}S^{0/+}_{T=0,1} \rightarrow Y(\pi)NN^{(Y:\Lambda->arXiv:0711.4943)}$ Small statistics, but well resolved final states. Dibaryon? $K_{\text{stopped}}^{-} + {}^{4}\text{He} -> {}^{2}S^{0/+}{}_{T=1/2,3/2}^{-} + N + N$ $^{2}S^{0/+}_{T=1/2,3/2} > YN$ nclusive measurement for $K^{-}_{stopped}$ + ⁴He -> ²S⁰_{T=1/2}+ d Semi-exclusive measurement for $K_{stopped}^{-} + {}^{4}He \rightarrow {}^{2}S_{T=1/2}^{0} + d$ ${}^{2}S^{0}_{T=1/2} \rightarrow Yn$ $-> {}^{3}S^{+}_{T=0.1} + n$ Y:Λ->PRC **76** 068202 ³S⁺ _{T=0.1} -> Yd



Measurement

 E549
 June 2005
 95M stopped K⁻

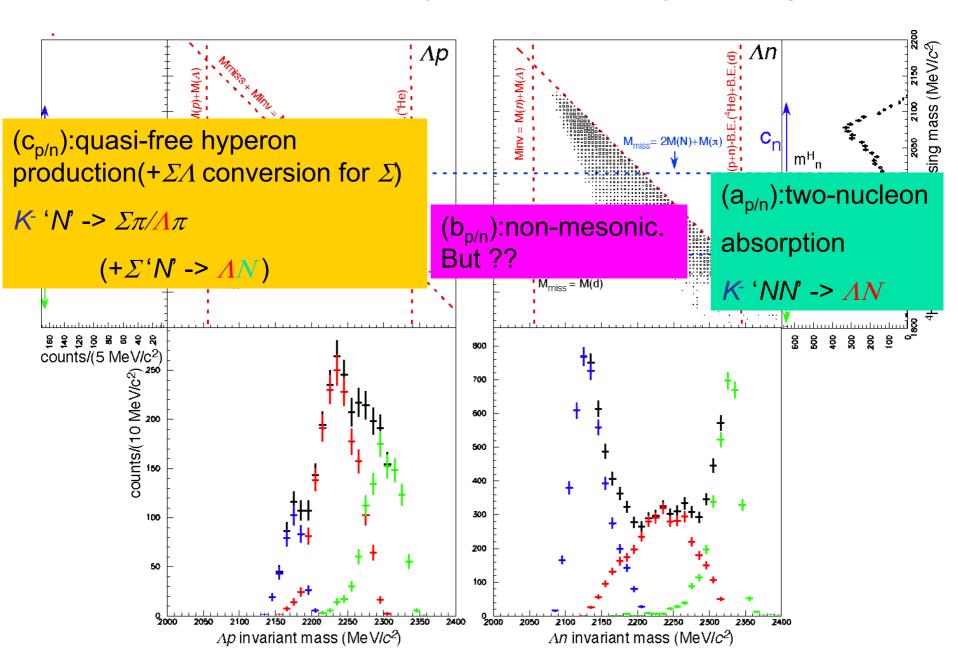
 E570-1
 October 2005
 108M stopped K⁻

 E570-2
 December 2005
 42M stopped K⁻

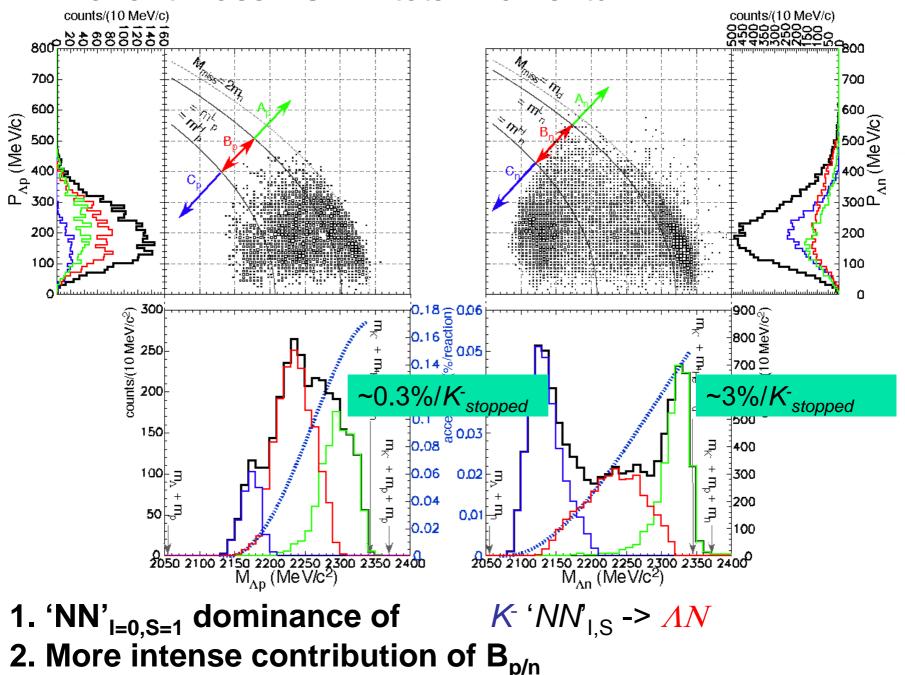
(†X)+back-to-back 2 nucleons+charged TOF method for $\pi/p/n$

⁴He(stopped K⁻, Λ N) missing mass

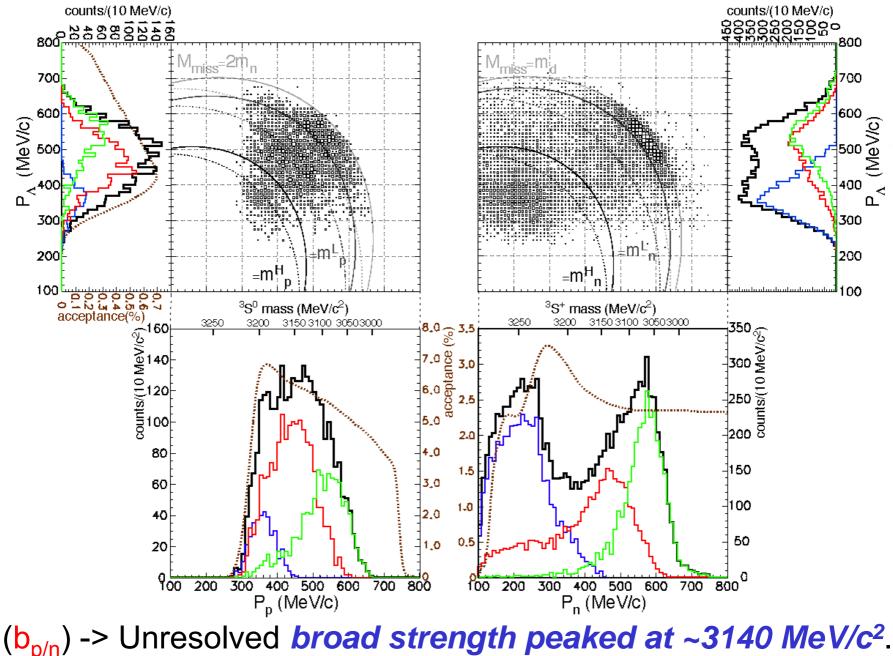
Regardless of the medium states,


$$\begin{array}{ll} \mathsf{K}^{\text{-}}_{\text{stopped}} + {}^{4}\text{He} & \text{->} \Lambda + \mathsf{N} + \mathsf{N} + \mathsf{N} + \pi \\ \mathsf{K}^{\text{-}}_{\text{stopped}} + {}^{4}\text{He} & \text{->} \Lambda + \mathsf{N} + \mathsf{N} + \mathsf{N} \\ \mathsf{K}^{\text{-}}_{\text{stopped}} + {}^{4}\text{He} & \text{->} \Lambda + \mathsf{n} + \mathsf{d} \end{array}$$

final states can be separated by ${}^{4}\text{He}(K_{\text{stopped}}, \Lambda N)$ missing mass,


$$M_{NN*} = \sqrt{(p_{init} - p_{\Lambda} - p_N)^2},$$

which is actually *internal energy* of reaction residual. Internal energy can give important information to interpret observed strength.


ΛN invariant mass VS ⁴He(stopped K⁻, ΛN) missing mass

AN invariant mass VS AN total momentum

∧ momentum VS N momentum

Discussion of a_p/a_n :2-nucleonabsorption (2NA) components

Clear observation of "two"-nucleon absorption,

 $\begin{array}{l} K^{-} `pp'_{|=1,S=0} \rightarrow \Lambda p (a_{p} \sim 0.3\%/K^{-}_{stopped}) \\ K^{-} `pn'_{|=1,S=0/I=0,S=1} \rightarrow \Lambda n (a_{n} \sim 3\%/K^{-}_{stopped}) \end{array}$

Consequences

1. Significantly small branch on $\Lambda p(I=0, S=1 \text{ dominance})$.

- 2. **only** ~**30%** of known $\Lambda(\Sigma^0)(pnn)(11.7 + 2.4)\%$ (PRD **1** 1267 (1970)) final states!
- 3. Suppression of

$$(K [pp]_{I=1,S=0}) > \Lambda p$$

decay mode of strongly bound K-pp system (cf. K-d-> An :~0.4%)

Properties of b_p/b_n components

1. Presence of intense(~70% of ΛNNN final states) b_p/b_n components.

2. b_n could be explained by the elastic re-scattering effect(PRC 74 025206).

3. Much different a_p:b_p,a_n:b_n intensity ratio.
 -> simultaneous explanation of b_p and b_n by elastic re-scattering effect is almost impossible...

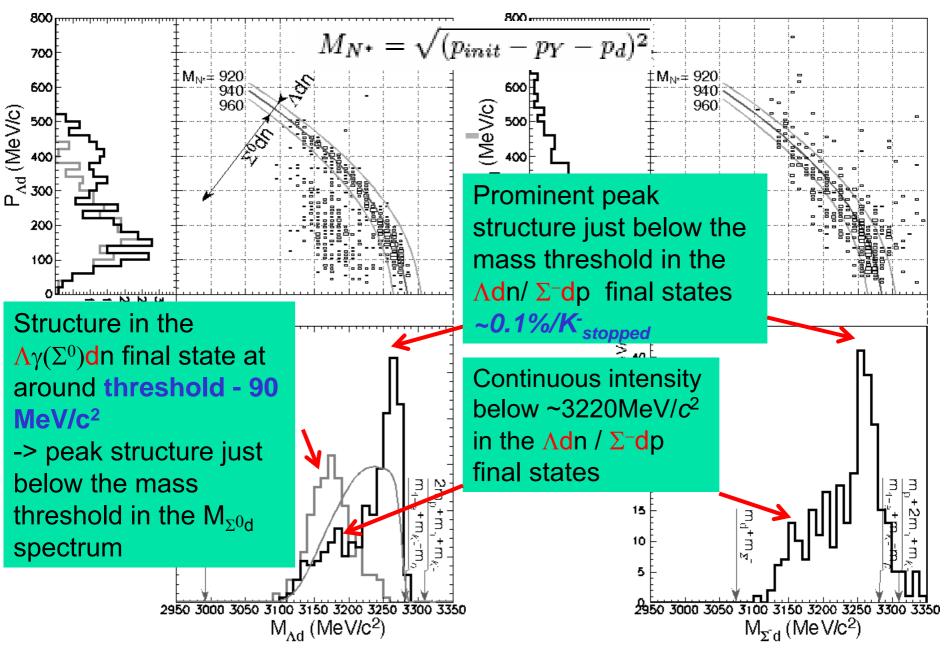
4. b_p cannot be explained by the re-scattering effect from *the 2D spectrum shape*.
-> b_p is extremely peculiar.

Interpretation of b_p component

Possible contibutions to component b_p ...

 $K^{-} (NN' \rightarrow \Sigma p) \qquad K^{-} (pp' \rightarrow \Sigma^{0} p)$ $\Sigma (N' \rightarrow \Lambda p) \qquad \Sigma^{0} \rightarrow \Lambda \gamma$

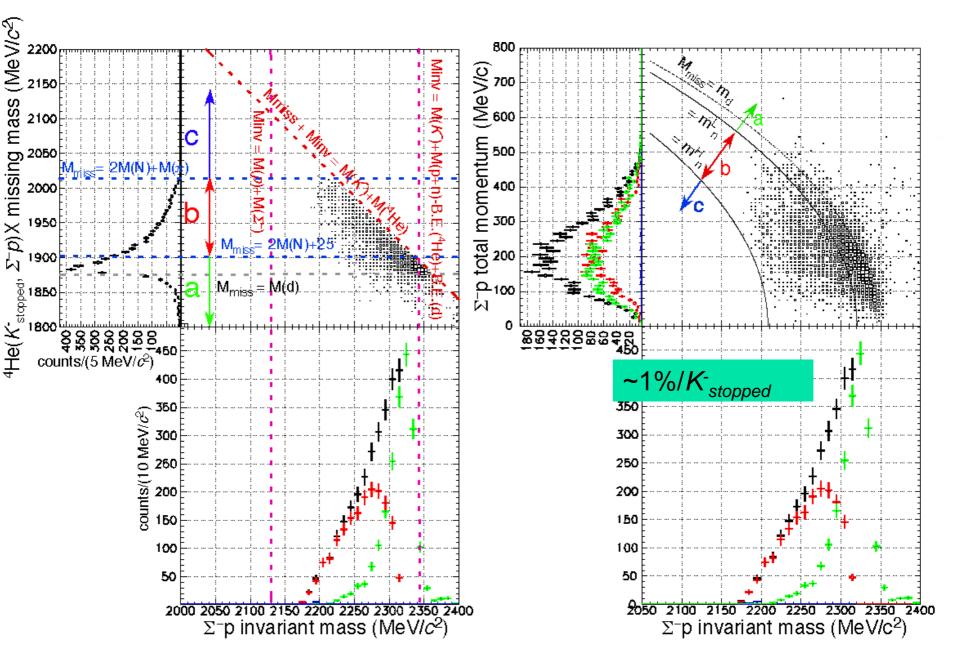
2. ∧NN branch of "three-nucleon absorption" cf. PRC **76** 068202) K⁻ 'NNN' -> ∧pN ← Expected brach is 0.1% order...


3. ${}^{2}S_{T=1/2}^{+}$ dibaryon (*K*⁻ [*pp*] _{I=1,S=0}) production and its Λp decay (for ${}^{6}Li + {}^{7}Li + {}^{12}C$, FINUDA collaboration, PRL **94** (2005) 212303)

$$\begin{aligned} & \mathcal{K}_{\text{stopped}}^{-} + {}^{4}\text{He} \quad -> {}^{2}\text{S}_{T=1/2}^{+} + n + n \\ & {}^{2}\text{S}_{T=1/2}^{+} -> \Lambda + \rho & \longleftarrow \text{Spin-isospin suppressed...} \end{aligned}$$

$$4. {}^{3}\text{S}_{T=1}^{0} \text{ tribaryon production and its } \Lambda \text{nn decay} \\ & \mathcal{K}_{\text{stopped}}^{-} + {}^{4}\text{He} \quad -> {}^{3}\text{S}_{T=1}^{0} + \rho \end{aligned}$$

$${}^{3}S_{T=1}^{0} \rightarrow \Lambda + n + r$$


Three-nucleon absorption (Yd branch)

Interpretation of b_n component

Possible contributions to component (b_n) ... 1. Σ branch of "two"-nucleon absorption and successive $\Sigma \Lambda$ Unseen on ΣN spectra. Possible contribution from conversion process **K**⁻ 'pn' -> Σ⁰n K- 'NN' -> Ση $\Sigma' N' \rightarrow \Lambda n$ $\Sigma^{0} \rightarrow \Lambda \gamma$ 2. Elastic re-scattering K^{-} (NN) (NN) -> $\Lambda n(NN)$ K^{-} (NN) (NN) -> $\Lambda n(NN)$ $\Lambda(n) \rightarrow \Lambda n$ $n(N) \rightarrow nN$ 3. ${}^{2}S_{T=1/2}^{0}$ dibaryon (*K*⁻ [*pn*] $_{I=0,S=1}$) production and its Λn decay $K_{\text{stopped}} + {}^{4}\text{He} \rightarrow {}^{2}\text{S}_{T=1/2} + p + n$ ${}^{2}S_{T=1/2}^{0} \rightarrow \Lambda + \eta$ 4. ${}^{3}S^{+}$ tribaryon production and its Λ pn decay $K_{\text{stopped}} + {}^{4}\text{He} -> {}^{3}\text{S}^{+} + n$ ${}^{3}S^{+} \rightarrow A + p + n$

$\Sigma^{-}p$ correlations (1)

2NA: ~1 % out of 3.6 +- 0.9 % of Σ⁻ppn/Σ⁻pd final state

Σ⁻ momentum distribution for non-2NA component is *never explained by elastic rescattering!!!*

 $\begin{array}{l} & \textit{K}_{\text{stopped}} + {}^{4}\text{He} \\ & -> {}^{2}\text{S}{}^{0}_{\text{T}=1/2} \left(\textit{K}^{\text{-}}\left[pn\right]_{1=0,\text{S}=1}\right) + p + n \\ & {}^{2}\text{S}{}^{0}_{\text{T}=1/2} -> \underline{\mathcal{S}}^{\text{-}} + p \\ & -> {}^{3}\text{S}{}^{0}_{\text{T}=1} + p \\ & {}^{3}\text{S}{}^{0}_{\text{T}=1} -> \underline{\mathcal{S}}^{\text{-}} + pn/d \end{array}$

Conclusions

- 1. The 2NA process accounts for **only** ~30% of non-mesonic Λ branch.
- 2. The remaining ~70% could include the signal of non-mesonic decay of strange multibaryons.
- 3. The $K^{-}[pp]_{I=1,S=0}$ hypothesis of Λp spectrum (FINUDA interpretation) is, however, *disfavored* by observed spin-isospin property of the 2NA process at 0-energy.
- 4. The Λp spectrum suggests ${}^{3}S_{T=1}^{0}$, while the Λn suggests ${}^{2}S_{T=1/2}^{0}/{}^{3}S_{T=0/1}^{+}$.
- 5. Σp correlations suggest ${}^{2}S_{T=1/2}^{0}/{}^{3}S_{T=1}^{0}$ even more strongly.
- 6. All suggested multibaryons have large width or as continuum.

Prospects

1. Whole spectrum shapes will be examined after the acceptance correction.

2. Important theoretical information to identify the kaonic nucleus experimentally is not the binding energy, but *branching ratio of the decay*.

3. The (K⁻,N) experiments with A=3/4 targets (cf. J-PARC E15 -> M. Iwasaki's prenary talk), by which Λ/Σ channels are *exclusively* studied in wide angular/momentum range, are awaited at J-PARC K1.8BR/K1.1.