# The **AMADEUS** experiment

# study of the kaonic clusters at daone

Oton Vázquez Doce (LNF-INFN) on behalf of the AMADEUS Collaboration MESON 2008, Kraków, June 9, 2008.



**AMADEUS** scientific case

Framework of AMADEUS

**Performing AMADEUS** 

Conclusions

**Analysis of KLOE data** 









# Letter of Intent Study of deeply bound kaonic nuclear states at DAΦNE2

#### **AMADEUS Collaboration**



111 scientists from33 Institutes of13 Countriessigned the LOI

March 2006

| Scientific case Amabeos namework Terrorning Amabeos Conclusions |
|-----------------------------------------------------------------|
|-----------------------------------------------------------------|

# kaonic clusters



#### A hadron physics important and unresolved topic: How the hadronic masses and interactions change in nuclear medium

Approach by means of the predicted

## **Deeply bound kaonic nuclear states**

firstly suggested by S. Wycech (S. Wycech, Nucl. Phys. A450 (1986) 399c)

Might offer the <u>ideal condition</u> to study how the <u>low-energy QCD</u> spontaneous and splicit Chiral-simmetry breaking changes in the <u>nuclear enviroment.</u> п

₽³H

Oton Vázquez Doce



Y. Akaishi and T. Yamazaki "Nuclear bound states in light nuclei" (Phys. Rev. C65 (2002) 044005)

Prediction based on the interpretation of the s-wave, isospin I=0 Λ(1405) resonance as a K<sup>-</sup>p bound state
Creation of a KN potential as to similtaneously reproduce data from KN scattering lenghts and binding energy and width of kaonic hydrogen





**Strong attractive I=0 KN interaction** favors discrete nuclear states **bound 100-200 MeV** and **Γ≈20-30 MeV**.



Shrinkage effect of a K on core nuclei forming unusual dense nuclear medium (5-10 times nuclear density)



Deeply bound kaonic nuclear states require the presence of a strong attractive KN interaction in the isospin I=0 channel

From experimental data:

- S-wave K<sup>-</sup> nucleon scattering length is negative at threshold
- $K_{\alpha}$  line shift of kaonic hydrogen is negative

"repulsive-type" interaction

KN potential strongly dependent on density:  $\rightarrow$  repulsive-type in free space  $\rightarrow$  attractive in nuclear matter

 $\rightarrow$ 

The AMADEUS experiment

Oton Vázquez Doce

Introduction Scientific case AMADEUS framework Performing AMADEUS Conclusions

# experimental & theoretical situation

Introduction

arbitrary unit

2200

2250

2300

 $m(\Lambda p)$  [MeV/c<sup>2</sup>]

Conclusions

#### **Experimental search for Kaonic Clusters**

#### E471 @ KEK

He<sup>4</sup>(K<sup>-</sup><sub>stopped</sub>,n)Kppn neutron missing mass

S<sup>+</sup>(3140)  $\Gamma \le 23$  MeV B = -194 MeV

#### FINUDA @ DA**P**NE

K<sup>-</sup>pp on <sup>6</sup>Li, <sup>7</sup>Li, <sup>9</sup>Be

B = -115 MeV  $\Gamma = 67 MeV$ 

**E930** @ **BNL-AGS** inflight (K<sup>-</sup>,n) reactions in water

FOPI @ GSI Ni-Ni collisions

 $M_{Ad} = 3170 \text{ MeV}$  B = -149 MeV  $\Gamma \approx 100 \text{ MeV}$ 

#### **OBELIX** old data analysis

 $(K_{stopped},Li) \rightarrow Kpp$  B=170 MeV/c  $\Gamma \leq 25$  $(K_{stopped}^{-}, {}^{4}He) \rightarrow Kppn \quad B=-121 \text{ MeV/c } \Gamma \leq 60$ 





#### **Future experiments**

- FOPI @ GSI-SIS: Al-Al, p-d
- **E15** @ **J-PARC:** K<sup>-</sup> induced reactions in flight  $(K^-, N) (K^-, \pi^-)$

FAIR @ GSI

#### New data from:

FINUDA @ DAFNE

E570 @ KEK

#### ... and AMADEUS!

"a global strategy to attack the major open problems of low-energy QCD"

#### **Theoretical debate**

- Alternative interpretations of the present data: double nucleon absorption followed by FSI of the produced particles with daughter nucleus

- Theoretical development of  $\overline{K}N$  interaction in free space in the framework of SU(3) Chiral unitary model, and modification due to many-body efects in nuclear medium

- Nature of the  $\Lambda(1405)$  resonance
- Bound kaon approach in the Skyrme model also predicts Kaonic Clusters
- Interpretations with not-so-strongly attractive KN potentials
- Nucleon-Nucleon repulsion
- Deeply bound states only in heavy nucleus

#### theoreticians demand new complete experimental results!

Oton Vázquez Doce

| Introduction | Scientific case | AMADEUS framework | Performing AMADEUS | Conclusions |
|--------------|-----------------|-------------------|--------------------|-------------|
|--------------|-----------------|-------------------|--------------------|-------------|

# experimental setup

**AMADEUS** aims to <u>confirm or deny</u> the existance of such an exotic states by performing a good measurement in a high performance detector on a suitable accelerator using

# In-medium full hadron spectroscopy

A complete determination of all **formation and decay channel** measuring, binding energies, widths, angular momenta, isospin, sizes, densities...

Detection of: - charged and neutral particles

- up to about 800 MeV/c
- high efficiency and resolution
- in  $4\pi$  geometry (full acceptance)

Oton Vázquez Doce



**Requirements satisfied by...** 





Setup performance requirements

## **Formation processes**

 $\Rightarrow$  The setup should be capable to measure:

- Position of K<sup>-</sup> stop: primary vertex and K<sup>+</sup> tracking (trigger)
- Outgoing neutrons and protons 400 600 MeV/c

→ KLOE has an experimentally proved capability for neutron detection (KLOnE)





#### **Invariant mass spectroscopy**

 $\rightarrow$  all decay products have to be identified, including hyperons decay products  $\rightarrow$  4-momenta of **charged an neutral** particles must be determined

- -protons
   200 500 MeV

   -pions
   50 200 MeV

   -neutrons
   200 500 MeV

   doutoroos
   MeV
- -deuterons...

Introduction

Scientific case AMADEUS framework

**Performing AMADEUS** 

Conclusions

### **AMADEUS** setup within KLOE



19

![](_page_18_Picture_2.jpeg)

## Without AMADEUS setup

![](_page_18_Picture_4.jpeg)

20

![](_page_19_Picture_2.jpeg)

#### **Without AMADEUS setup**

![](_page_19_Picture_4.jpeg)

Oton Vázquez Doce

![](_page_20_Picture_2.jpeg)

#### WITH AMADEUS setup

![](_page_20_Picture_4.jpeg)

Introduction

**Conclusions** 

# **AMADEUS inner region setup**

Gaseous or thin solid target

Scientific case

Draft design of a **toroidal cryogenic cell target**:

- 2 bar
- 10 K
- 150 NTP density

![](_page_21_Picture_8.jpeg)

Performing AMADEUS

- 75µm Kapton, with aluminum grid reinforcement

AMADEUS framework

- 30-40% of K<sup>-</sup> stopped

A tracking/vertex detector (a Multilayer cilindrical GEM or a Time Projection Chamber (TPC) with GEM-readout surrounding the half toroidal cryogenic target cell with the kaon trigger configuration.

![](_page_22_Figure_2.jpeg)

http://www.lnf.infn.it/sis/preprint/pdf/getfile.php?filename=LNF-07-24(IR).pdf

![](_page_23_Figure_2.jpeg)

kaon trigger made of 2+3 scintillating fibers layers

target cell

![](_page_24_Figure_2.jpeg)

## **From preliminary Monte Carlo simulation**

![](_page_24_Figure_4.jpeg)

 $12.5 \times 10^{8} \, {}^{4}\text{He-K}^{-}$  atoms/month 40% K<sup>-</sup> stopped in He target  $\rightarrow$ 

12.5 × 10<sup>5</sup> kaonic clusters/month  $10^{-3}$  cluster formation yield  $\rightarrow$ 

Identification & tracking efficiencies  $\rightarrow 10^5$  events/month (~1000 pb<sup>-1</sup>)

| Introduction Scientific case AMADEUS framew | k Performing AMADEUS Conclusions |
|---------------------------------------------|----------------------------------|
|---------------------------------------------|----------------------------------|

Introduction Scientific case AMADEUS framework Performing AMADEUS

Conclusions

#### From AMADEUS LOI:

#### Study of deeply bound kaonic nuclear states at daOne

*"In conclusion, an initial programme based on the study of the <sup>3</sup>He and the <sup>4</sup>He targets, to investigate dibaryonic and tribaryonic states,* would require an integrated luminosity from 2 to 6 fb<sup>-1</sup> " Introduction Scientific case AMADEUS framework Performing AMADEUS

Conclusions

#### From AMADEUS LOI:

#### Study of deeply bound kaonic nuclear states at daOne

*"In conclusion, an initial programme based on the study of the <sup>3</sup>He and the <sup>4</sup>He targets, to investigate dibaryonic and tribaryonic states,* would require an integrated luminosity from 2 to 6 fb<sup>-1</sup> "

•**Full hadron spectroscopy with 4\pi geometry** 

Target+trigger+tracking devices in existing KLOE setup

Introduction Scientific case AMADEUS framework Performing AMADEUS

Conclusions

#### From AMADEUS LOI:

#### Study of deeply bound kaonic nuclear states at daΦne

*"In conclusion, an initial programme based on the study of the <sup>3</sup>He and the <sup>4</sup>He targets, to investigate dibaryonic and tribaryonic states,* would require an integrated luminosity from 2 to 6 fb<sup>-1</sup> "

•Full hadron spectroscopy with  $4\pi$  geometry

Target+trigger+tracking devices in existing KLOE setup

Possible at DA $\Phi$ NE with luminosity upgrade

Oton Vázquez Doce

**Before AMADEUS...** 

# **ANALISYS OF KLOE DATA**

#### Before AMADEUS...

# **ANALISYS OF KLOE DATA**

![](_page_30_Figure_4.jpeg)

# Before AMADEUS... ANALISYS OF KLOE DATA Lambda invariant mass 20000 $\sqrt{\Lambda \rightarrow p + \pi^{-1}}$ 15000 15000 15000 -> analyzed up to an integrated $\sigma = 0.391 \pm 1000$

luminosity of **1.1 fb**<sup>-1</sup> from KLOE data

$$K^{-}_{stopped} + {}^{4}He \rightarrow n + n + (\underline{K^{-}pp})$$

$$\land + p$$

$$K^{-}_{stopped} + {}^{4}He \rightarrow n + (\underline{K^{-}ppn})$$

$$\land + d$$

![](_page_31_Figure_5.jpeg)

PDG:  $M_{\Lambda} = 1115,683 \pm 0.006$  MeV/c<sup>2</sup>

#### KLOE data analysis by AMADEUS collaboration

#### Oton Vázquez Doce

#### **Before AMADEUS...**

# **ANALISYS OF KLOE DATA**

![](_page_32_Picture_4.jpeg)

![](_page_32_Figure_5.jpeg)

![](_page_32_Figure_6.jpeg)