Coherent and incoherent π^0 photoproduction at MAMI

Dan Watts, Claire Tarbert University of Edinburgh

For the Crystal Ball at MAMI and A2 Collaboration

Meson 2008

Mainzer Mikrotron MAMI

Talk Outline

• Physics motivation for accurate π^0 photoproduction measurements

Coherent – Accurate Matter form factors Neutron skins of stable nuclei (neutron stars) **Incoherent** - Transition matter form factors

- The Crystal Ball at MAMI
- Forward look

Why measure the matter form factor?

• Our knowledge of the shape of stable nuclei is presently incomplete

e.g. ²⁰⁸Pb RMS charge radius accuracy < 0.001 fm RMS neutron radius accuracy ~0.2 fm !!

Horowitz et al. PRC63 025501 (2001) Piekarewicz et al. NPA 778 (2006)

Matter form factor and neutron stars

Coherent pion photoproduction

Photon probe
Interaction well understood

 π^0 meson – produced with ~equal probability on protons *AND* neutrons.

Select reactions which leave nucleus in ground state

Reconstruct π^0 from $\pi^0 \rightarrow 2\gamma$ decay

Angular distribution of $\pi^0 \rightarrow PWIA$ contains the matter form factor

dσ/dΩ(PWIA) = (s/m_N²) A² (q_π*/2k_γ) F₂(E_γ*,θ_π*)² |F_m(q)|² sin²θ_π*

• π^0 final state interactions - use latest complex optical potentials tuned to π -A scattering data. Corrections modest at low pion momenta

Coherent pion photoproduction

Outline of analysis

²⁰⁸Pb : Momentum transfer distributions

10

02

0.4 0.6

0.8

1

1.2 1.4 1.6

1.8 2

q [fm*]

 $E_{\gamma} = 190-200 \text{ MeV}$ 10^{7} 10^{7} 10^{7} $0.2 \text{ 0.4 } 0.6 \text{ 0.8 } 1 \text{ 1.2 } 1.4 \text{ 1.5 } 1.8 \text{ g(fm}^{-1)}$

Ey = (240-260)MeV

— Unitary isobar model (γ,π) with complex optical potential Dreschel NPA 660 (1999)

Ey = (190-200)MeV

Ey = (200-220) NeV

²⁰⁸Pb: Simple correction for distortion

- Full "model independent" analysis planned
- For first preliminary assessment
 - 1) Carry out simple correction of q shift using the theory
 - 2) Analyse corrected minima fit with Bessel fn.

²⁰⁸Pb neutron skin – preliminary assessment

- See effects of a neutron skin of ~0.1 fm !! (preliminary)
- More detailed analysis in progress to reduce and assess systematics
- Future measurement skin development across isotopic chain?

Incoherent nuclear π^0 photoproduction

- Measurement of neutral pion production to a discrete excited nuclear state has proven elusive for many decades
- \rightarrow Detect nuclear decay photon *in the* same detector as the π^0 decay photons

Alignment of recoiling ¹²C nucleus

Incoherent nuclear π^0 photoproduction

Takaki △-hole model (NPA 443 p570 (1985)) — Full calculation

--- Without **A-N** interaction

----- Tryasuchev (Phys At.Nuc. 70 827 (2007)

<section-header><section-header><text><text><text><image><image>

Next steps for decay γ work:

- ¹⁶O, ⁴⁰Ca
- Neutron rich nuclei multiproton knockout
- Hypernuclei?

Summary

 New high quality π⁰ photoproduction data will give valuable and timely constraints on the structure of the nucleus and neutron stars

π^0 photoproduction amplitude

- Basic production amplitude ~ equal for protons and neutrons
- Dominated by $\Delta(1232)$ production

Isospin structure of amplitude

$$\begin{array}{l} \mathsf{A}(\gamma p \rightarrow \pi^{0} p) = \sqrt{2/3} \ \mathsf{A}^{\vee 3} + \sqrt{1/3} (\mathsf{A}^{\vee} - \mathsf{A}^{\vee}) \\ \mathsf{A}(\gamma n \rightarrow \pi^{0} n) = \sqrt{2/3} \ \mathsf{A}^{\vee 3} + \sqrt{1/3} (\mathsf{A}^{\vee} + \mathsf{A}^{\vee}) \end{array}$$

$$\Delta$$
 has I=3/2 -- A^{V3} only

²⁰⁸Pb: Total coherent cross sections

²⁰⁸Pb: π^0 angular distributions

Eγ=170-180 MeV

80

60

20

100

120

140

160 180

θ_π [°]

²⁰⁸Pb: Preliminary assessment of Neutron skin

 $E\gamma = (200-220)MeV$

Alignment of recoiling ¹⁶O nucleus

Alignment of recoiling ⁴⁰Ca nucleus

- Strong $sin^2(3\alpha)$ component
- Expected from 3⁻ to 0⁺ transition

Neutron Skins - present situation

Proton scattering

Seminal analysis by Hoffman for all data (0.3 - 1 GeV). $\Delta r_{np} (^{208}Pb) = -0.02 \rightarrow 0.5$ fm

Pickup reactions.

Recent analysis of p and n pickup gave Δr_{np} ~0.5fm for ²⁰⁸Pb

 $\Delta r_{np} \sim 0$

Coherent pion photoproduction

Nuclear decay photons ¹²C

Background predominantly from split-off clusters from pi0 detection

Coherent π^0 - next steps

- Plot data as function of momentum transfer (q)
- Use ratio DWIA/PWIA from theory (passed through detector acceptance)

$d\sigma/d\Omega$ (PWIA) = (s/m_N²) A² (q/2k_γ) F₂(E_γ^{*},θ_π^{*})² |F_m(q)|² sin²θ_π^{*}

- $|F_m(q)|^2 \rightarrow 16$ independent determinations in range E₇=150-220 MeV
- Accuracy r_n (rms) < 0.05fm

Incoherent π^0 photoproduction

- 1) 1st measurement of transition matter form factor with an EM probe!
- 2) New precision test of the Δ -N interaction
- Cannot extract incoherent strength with attainable resolution of γ and π^0
- \rightarrow Detect nuclear decay photon *in the same detector* as the π^0 decay photons

Nuclear decay photons !!

Excitation spectrum of nucleon

- Nucleon: 3 light quarks existing in a sea of virtual gluons and $q\overline{q}$ pairs
- Excitation spectrum → fundamental information on interactions/dynamics of constituents. Underpins understanding of the NN force

• Predicted by various theories using different approaches)

Constituent quark models (e.g. Capstick & Roberts, FSU)

Lattice QCD (fast developing) (e.g. Jefferson Lab, Morningstar)

Conformal holographic dual of QCD (e.g. Brodsky, SLAC)

• But ... Experimental determination of spectrum is poor

Polarisation observables

- σ just one of 16 observables in pseudo scalar meson photoproduction
- Complete measurement requires 8 well chosen observables
- Only possible with double polarisation measurements

The Edinburgh nucleon polarimeter – test prototype

Results from 1st test of polarimeter

Polar angle distribution for unpolarised nucleons of nucleon polarisation

Analysing power of scatterer

Analysis of test data – $p(\gamma, \pi^0)p$ C_{x'}

- First measurement of beam helicity transfer in resonance region
- 1000 hour production beamtime later this year

The way forward – First "Complete measurement"

Observable		Polarisation of			
		γ	target	recoil	
1. { <i>d</i> a	$\sigma/d\Omega\}/N$				$= b_1 ^2 + b_2 ^2 + b_3 ^2 + b_4 ^2$
Single polarization				•	
2. P					$= b_1 ^2 - b_2 ^2 + b_3 ^2 - b_4 ^2$
3. Σ				•	$= b_1 ^2+ b_2 ^2- b_3 ^2- b_4 ^2$
4. <i>T</i>			\rightarrow		$= b_1 ^2 - b_2 ^2 - b_3 ^2 + b_4 ^2$
Double polarizaton Beam-target			-		
5. E					$= 2 \operatorname{Re}(b_1 b_3^* + b_2 b_4^*)$
6. <i>F</i>			→		$=2 \operatorname{Im}(b_1 b_3^* - b_2 b_4^*)$
7. G		\rightarrow			$= 2 \operatorname{Im}(b_1 b_3^* + b_2 b_4^*)$
8. H			\rightarrow		$= -2 \operatorname{Re}(b_1 b_3^* + b_2 b_4^*)$
Bea	am-recoil				
9. C_x				\rightarrow	$= -2 \operatorname{Im}(b_1 b_4^* - b_2 b_3^*)$
10. C_y					$=2 \operatorname{Re}(b_1 b_4^* + b_2 b_3^*)$
11. O_x		\rightarrow		\rightarrow	$=2 \operatorname{Re}(b_1 b_4^* - b_2 b_3^*)$
12. <i>O_z</i>		\rightarrow			$= 2 \operatorname{Im}(b_1 b_4^* + b_2 b_3^*)$
Tar	get-recoil				
13. T_x			\rightarrow	\rightarrow	$= 2 \operatorname{Re}(b_1 b_2^* - b_3 b_4^*)$
14. T_z			\rightarrow		$= 2 \operatorname{Im}(b_1 b_2^* - b_3 b_4^*)$
15. L_x				\rightarrow	$= -2 \operatorname{Im}(b_1 b_2^* + b_3 b_4^*)$
$\underline{16. \ L_z}$	· · · · · · · · · · · · · · · · · · ·				$= 2 \operatorname{Re}(b_1 b_2^* + b_3 b_4^*)$

²⁰⁸Pb: Total coherent cross sections

<u>Preliminary (!!)</u> extraction of C_x in $p(\gamma, \pi^0)p$

• C_x – Polarisation transfer from helicity polarised beam to recoil N

• 1000 hour beamtime scheduled in 2007 !!

Excitation spectrum of nucleon

- Primary motivation of the new EM beam facilities
 → better establish the nucleon excitation spectrum
- Meson photoproduction reactions on nucleon targets

 $\gamma \textbf{+} \textbf{N} \rightarrow \textbf{N}^{\textbf{*}} \rightarrow N + \pi$

•
$$\tau$$
 small \rightarrow resonances are broad ($\Delta E \Delta \tau \sim \hbar$)

Coherent pion photoproduction - analysis

Onset of quark degrees of freedom in the Deuteron

- pQCD quark prediction: σ will scale with s⁻¹¹ \rightarrow D(γ ,pn) at 1GeV ??
- More sensitivity → Polarisation transfer (=0 for pQCD hadron helicity conservation)
- Edinburgh polarimeter first measurement through "transition"
- Also test new generation of baryon-meson models, quark gluon string models ...

J.Brudvik, J. Goetz, B.M.K.Nefkens, S.N.Prakhov, A.Starostin, I. Saurez, University of California, Los Angeles, CA, USA

J.Ahrens, H.J.Arends, D.Drechsel, D.Krambrich, M.Rost, S.Scherer, A.Thomas, L.Tiator, D. von Harrach and Th.Walcher Institut fur Kernphysik, University of Mainz, Germany

R. Beck, M. Lang, A. Nikolaev, S. Schumann, M. Unverzagt, Helmholtz-Institut fur strahlen und Kernphysik, Universitat Bonn,

S.Altieri, A.Braghieri, P.Pedroni, A.Panzeri and T.Pinelli INFN Sezione di Pavia and DFNT University of Pavia, Italy

J.R.M.Annand, R.Codling, E.Downie, J. Kellie, K.Livingston, J.McGeorge, I.J.D.MacGregor, R. Owens D.Protopopescu and G.Rosner Department of Physics and Astronomy, University of Glasgow, Glasgow, UK

C.Bennhold and W.Briscoe George Washington University, Washington, USA

S.Cherepnya, L.Fil'kov, and V.Kashevarow Lebedev Physical Institute, Moscow, Russia

V.Bekrenev, S.Kruglov, A.Koulbardis, and N.Kozlenko Petersburg Nuclear Physics Institute, Gatchina, Russia

B.Boillat, B.Krusche and F.Zehr, Institut fur Physik University of Basel, Basel, Ch

P. Drexler, F. Hjelm, M. Kotulla, K. Makonoyi, R.Novotny, M. Thiel and D. Trnka II. Phys. Institut, University of Giessen, Germany

D.Branford, K.Foehl, D. Glazier, T. Jude, C.Tarbert and D.P.Watts, School of Physics, Univ. of Edinburgh, Edinburgh, UK

V.Lisin, R.Kondratiev and A.Polonski Institute for Nuclear Research, Moscow, Russia

J.W. Price California State University, Dominguez hills, CA, USA

D.Hornidge Mount Allison University, Sackville, Canada

P. Grabmayr and T. Hehl Physikalisches Institut Universitat Tubingen, Tubingen, Germany

D.M. Manley Kent State University, Kent, USA

M. Korolija and I. Supek Rudjer Boskovic Institute, Zagreb, Croatia

D. Sober, Catholic University, Washington DC

M. Vanderhaeghen, College of William and Mary, Williamsburg, USA

CB@MAMI

 $E_{\gamma} = (280-300) MeV$

DWIA

- + Many body production operator
- + Intermediate coh. pi production
- + ΔN interaction

²⁰⁸Pb : Momentum transfer distributions

q [fm']

π^0 photoproduction - amplitude

- Basic production amplitude ~ equal for protons and neutrons
- Dominated by $\Delta(1232)$ production

Isospin structure of amplitude

$$\begin{array}{l} \mathsf{A}(\gamma p \rightarrow \pi^0 p) = \sqrt{2/3} \ \mathsf{A}^{\vee 3} + \sqrt{1/3} (\mathsf{A}^{\vee 1} - \mathsf{A}^{1S}) \\ \mathsf{A}(\gamma n \rightarrow \pi^0 n) = \sqrt{2/3} \ \mathsf{A}^{\vee 3} + \sqrt{1/3} (\mathsf{A}^{\vee 1} + \mathsf{A}^{1S}) \end{array}$$

$$\Delta$$
 has I=3/2 -- A^{V3} only

Alignment of recoiling ¹²C nucleus

Nuclear decay photons in the Crystal Ball !!

²⁰⁸Pb neutron skin – preliminary assessment

- See effects of a neutron skin of 0.1-0.15 fm !! (preliminary)
- More detailed analysis in progress to reduce and assess systematics
- Future measurement skin development across isotopic chain?

²⁰⁸Pb: Preliminary evaluation of Neutron skin effects

π^0 photoproduction as a nuclear probe

- Gives information on the matter distribution with EM probe
- π^0 production ~ identical probability from protons & neutrons

Access matter form factor and matter transition form factors Precision test of our understanding of the Δ -nucleon interaction

Test specific aspects of the pion production amplitude

Transition matter form factors

Takaki ∆-hole model (NPA 443 p570 (1985)) — Full calculation

--- Without **A-N** interaction

- Tryasuchev (Phs At. Nuc. 70 827 (2007))

CM Tarbert, DP Watts et. al., Phys. Rev. Lett (2008)

Coherent π^0 analysis - next steps

- "Model independent" extraction of matter form factor
 as done for elastic electron scattering
- Parameterise $\rho(r)$ sum of bessel functions
- Fit theoretical predictions to data to extract coefficients
- Active collaboration with people involved in charge distribution measurements

Why is neutron radius hard to establish?

"Insensitivity of the elastic proton-nucleus reaction to the neutron radius of ²⁰⁸Pb" Piekarewicz and Pieper NPA 778 10 (2006)

Maybe mention antiproton stuff?

²⁰⁸Pb: Preliminary evaluation of Neutron skin effects

Excitation spectrum of nucleon

• Structure of nucleon fundamental – gives important

Alignment of recoiling ¹⁶O nucleus

Fitting the pion energy difference Spectra

Coherent \rightarrow Gaussian with $\sigma(E_{\pi})$ extracted from coherent maximum)

Smeared step function at A(γ , π^0 N)A-1 threshold

For light nuclei with well separated 1st excited state(s) Include second gaussian centered at appropriate energy

How do we get the Coherent part?

• One technique is to use energy difference analysis

Best previous measurements \rightarrow segmented arrays

Reliable coherent extraction limited due to sharply θ_{π} dependent systematic effects in E π determination

The excitation spectrum of the nucleon

- Coherent process extracted with a new level of accuracy
- Data set of sufficient quality to extract information on matter form factor
- Nuclear decay photon analysis allows determination of incoherent production -> study in it's own right and use to improve coherent extraction

Alignment of recoiling ⁴⁰Ca nucleus

- Strong $sin^2(3\alpha)$ component
- Expected from 3⁻ to 0⁺ transition

²⁰⁸Pb: Preliminary assessment of Neutron skin

 $E\gamma = (200-220)MeV$

Combined p0 and decay g detection efficiency

Incoherent nuclear pion photoproduction

Takaki ∆-hole model NPA 443 p570 (1985)

Nuclear wavefunctions have configuration coefficients extracted from e- scattering

• $d\sigma/d\Omega$ corrected for both π^0 and nuclear decay γ detection efficiency

First determination of incoherent photoproduction

²⁰⁸Pb: π^0 angular distributions

Eγ=170-180 MeV

80

60

20

100

120

140

160 180

θ_π [°]

Eγ = (135-140)MeV

Eγ = (140-145)MeV

0.6

0.5

Eγ = (160-170)MeV

0.7

0.8

0.9

1.1 q [fm⁻¹]

1

[**ɯɟq** rl] ʊp/໑p

10²

10 -

Eγ = (145-150)MeV

Eγ = (170-180)MeV

 $E_{\gamma} = (220-240) MeV$

= (20-24)°

Neutron Skins - present situation

• Proton scattering

Seminal analysis by Hoffman for all data (0.3 - 1 GeV). $\Delta r_{np} (^{208}Pb) = -0.02 \rightarrow 0.5 \text{ fm}$

р Ν

- Pickup reactions. Recent analysis of p and n pickup gave $\Delta r_{np} \sim 0.5 \text{fm for } ^{208}\text{Pb}$
- Antiprotonic atoms $\Delta r_{np} \sim 0.15 \text{fm for }^{208}\text{Pb.}$

Nuclear decay photons ¹²C

Background predominantly from split-off clusters from pi0 detection
Talk Outline

- CrystalBall@MAMI
- π^0 photoproduction from nuclei

The new Edinburgh nucleon polarimeter

Pion – Nucleus interactions

- Diffraction pattern distorted due to π -A interactions (FSI)
- Optical potential constructed from $\ensuremath{\wp}$ amplitude in \ensuremath{p} space
- Intermediate Δ also included (impolingher ${\rm P}_{\pi}$)
- Accurately describes wealth of $A(\pi, \cdot)$
- If ∆(FSI) ~ 10% (0.07)×(±2°)×0.1 = ±0.014 fm
- Each **q** occurrs for different $P\pi$ at di incident $E\gamma$ check predicted FSI effe

Neutron Skins - why are they interesting?

1) Fundamental quantity of Nuclear physics

RMS charge radius known to < 0.0001 fm RMS neutron radius known to ~0.2 fm !!

Horowitz et al. PRC63 025501 (2001)

h_cross_220_240

dơ/dΩ [µb/sr] Q

10

10

h_cross_200_220

h_cross_240_260

20

h_cross_260_280

80 100 120 140 160 180

θ,

⁴⁰Ca: Total coherent cross sections

⁴⁰Ca: π^0 angular distributions

¹²C: Total coherent cross sections

20 40 60 80 100 120 140 160 180

θ_

θ_

90 100 110

dg/dΩ [µb/sr] ද.

10

0

dg/dΩ [µb/sr] ရွ

10

h_cross_190_200

60

50

40

70

80

h_cross_200_220

The MAMI facility

A2 HDSM 100% duty factor electron microtron MAMI-C 1.5 GeV upgrade (Completed!!) (MAMI-B 0.85 GeV) 10 m RTM2 XI One of the MAMI-C magnets

Photon Tagger upgrade

Crystal Ball arrives at Frankfurt

h_cross_170_180

h_cross_140_145

h_cross_145_150

Setup at MAMI

Crystal Ball arrives at Frankfurt

$A_{gs}(\gamma,\pi^0)A_{gs}$ coherent π^0 photoproduction

$$d\sigma/d\Omega \sim A^2(q/k_{\gamma})P_3^2|F_m(q)|^2\sin^2\theta_{\pi}$$

²⁰⁸Pb: π^0 angular distributions

Pb-208

The MAMI facility

A2 HDSM 100% duty factor electron microtron MAMI-C 1.5 GeV upgrade (Completed!!) (MAMI-B 0.85 GeV) 10 m RTM2 XI One of the MAMI-C magnets

MWPC & Particle-ID in situ

 π MissEn vs π Theta E γ = (160 - 170)MeV

Fig. 3. Upper part: A-dependence of R_{PWIA} at $q = 0.5q_1$ for incident photon energies of 210, 230, 255, 280, and 305 MeV (from top to bottom). Lower part: fitted coefficients α of the mass dependence.

π^0 photoproduction amplitude

- Basic production amplitude ~ equal for protons and neutrons
- Dominated by $\Delta(1232)$ production

Isospin structure of amplitude

$$\begin{array}{l} \mathsf{A}(\gamma p \rightarrow \pi^{0} p) = \sqrt{2/3} \ \mathsf{A}^{\vee 3} + \sqrt{1/3} (\mathsf{A}^{\vee} - \mathsf{A}^{\vee}) \\ \mathsf{A}(\gamma n \rightarrow \pi^{0} n) = \sqrt{2/3} \ \mathsf{A}^{\vee 3} + \sqrt{1/3} (\mathsf{A}^{\vee} + \mathsf{A}^{\vee}) \end{array}$$

$$\Delta$$
 has I=3/2 -- A^{V3} only

π^0 production in the nucleus

Access matter form factor and matter transition form factor with EM probe

"Clean" test of π^0 -nucleus interaction & effect of medium on Δ -properties

Test more specific aspects of the basic production amplitude

J.Brudvik, J. Goetz, B.M.K.Nefkens, S.N.Prakhov, A.Starostin, I. Saurez, University of California, Los Angeles, CA, USA

J.Ahrens, H.J.Arends, D.Drechsel, D.Krambrich, M.Rost, S.Scherer, A.Thomas, L.Tiator, D. von Harrach and Th.Walcher Institut fur Kernphysik, University of Mainz, Germany

R. Beck, M. Lang, A. Nikolaev, S. Schumann, M. Unverzagt, Helmholtz-Institut fur strahlen und Kernphysik, Universitat Bonn Germany

S.Altieri, A.Braghieri, P.Pedroni, A.Panzeri and T.Pinelli INFN Sezione di Pavia and DFNT University of Pavia, Italy

J.R.M.Annand, R.Codling, E.Downie, J. Kellie, K.Livingston, J.McGeorge, I.J.D.MacGregor, R. Owens D.Protopopescu and G.Rosner Department of Physics and Astronomy, University of Glasgow, Glasgow, UK

C.Bennhold and W.Briscoe George Washington University, Washington, USA

S.Cherepnya, L.Fil'kov, and V.Kashevarow Lebedev Physical Institute, Moscow, Russia

V.Bekrenev, S.Kruglov, A.Koulbardis, and N.Kozlenko Petersburg Nuclear Physics Institute, Gatchina, Russia

B.Boillat, B.Krusche and F.Zehr, Institut fur Physik University of Basel, Basel, Ch

P. Drexler, F. Hjelm, M. Kotulla, K. Makonoyi, R.Novotny, M. Thiel and D. Trnka II. Phys. Institut, University of Giessen, Germany

D.Branford, K.Foehl, D. Glazier, T. Jude, C.Tarbert and D.P.Watts, School of Physics, Univ. of Edinburgh, Edinburgh, UK

V.Lisin, R.Kondratiev and A.Polonski Institute for Nuclear Research, Moscow, Russia

J.W. Price California State University, Dominguez hills, CA, USA

D.Hornidge Mount Allison University, Sackville, Canada

P. Grabmayr and T. Hehl Physikalisches Institut Universitat Tubingen, Tubingen, Germany

D.M. Manley Kent State University, Kent, USA

M. Korolija and I. Supek Rudjer Boskovic Institute, Zagreb, Croatia

- D. Sober, Catholic University, Washington DC
- M. Vanderhaeghen, College of William and Mary, Williamsburg, USA

CB@MAMI

Neutron skins & Nuclear theories

h_cross_160_170

h_cross_160_170

²⁰⁸Pb Neutron skin and Neutron stars

Preliminary analyses: Neutron skin determination from $A_{gs}(\gamma, \pi^0)A_{gs}$ coherent π^0 photoproduction

 Clear diffraction patterns for ²⁰⁸Pb and a range of lighter nuclei

 $d\sigma/d\Omega \sim A^2(q/k_{\gamma})P_3^2|F_m(q)|^2\sin^2\theta_{\pi}$

Data analysis Of C. Tarbert

Also see coincident low energy *Nuclear Decay Photons !!*

J.Brudvik, J. Goetz, B.M.K.Nefkens, S.N.Prakhov, A.Starostin, I. Saurez, University of California, Los Angeles, CA, USA

J.Ahrens, H.J.Arends, D.Drechsel, D.Krambrich, M.Rost, S.Scherer, A.Thomas, L.Tiator, D. von Harrach and Th.Walcher Institut fur Kernphysik, University of Mainz, Germany

R. Beck, M. Lang, A. Nikolaev, S. Schumann, M. unverzagt, Helmholtz-Institut fur strahlen und Kernphysik, Universitat Bonn Germany

S.Altieri, A.Braghieri, P.Pedroni, A.Panzeri and T.Pinelli INFN Sezione di Pavia and DFNT University of Pavia, Italy

J.R.M.Annand, R.Codling, E.Downie, D.Glazier, J. Kellie, K.Livingston, J.McGeorge, I.J.D.MacGregor, R. Owens D.Protopopescu and G.Rosner Department of Physics and Astronomy, University of Glasgow, Glasgow, UK

C.Bennhold and W.Briscoe George Washington University, Washington, USA

S.Cherepnya, L.Fil'kov, and V.Kashevarow Lebedev Physical Institute, Moscow, Russia

V.Bekrenev, S.Kruglov, A.Koulbardis, and N.Kozlenko Petersburg Nuclear Physics Institute, Gatchina, Russia

B.Boillat, B.Krusche and F.Zehr, Institut fur Physik University of Basel, Basel, Ch

P. Drexler, F. Hjelm, M. Kotulla, K. Makonoyi, R.Novotny, M. Thiel and D. Trnka II. Phys. Institut, University of Giessen, Germany

D.Branford, K.Foehl, C.M.Tarbert and D.P.Watts School of Physics, University of Edinburgh, Edinburgh, UK

V.Lisin, R.Kondratiev and A.Polonski Institute for Nuclear Research, Moscow, Russia

J.W. Price California State University, Dominguez hills, CA, USA

D.Hornidge Mount Allison University, Sackville, Canada

P. Grabmayr and T. Hehl Physikalisches Institut Universitat Tubingen, Tubingen, Germany

D.M. Manley Kent State University, Kent, USA

M. Korolija and I. Supek Rudjer Boskovic Institute, Zagreb, Croatia

D. Sober Catholic Catholic University, Washington DC

M. Vanderhaeghen, College of William and Mary, Williamsburg, USA

CB@MAMI

Preliminary analyses: Incoherent π^0

²⁰⁸Pb : Momentum transfer distributions

q [fm']