

Kaonic Atoms at $Da\Phi ne$ the SIDDHARTA Experiment

(Johann Zmeskal) E. Widmann SMI, Vienna

LNF - INFN SMI – ÖAW IFIN-HH Bucharest INFN Sezione Roma RIKEN Univ. Tokyo Univ. Victoria Politecnico Milano MPI München

Content

- Motivation
- Kaonic atoms at DaΦne

 → Results on kaonic nitrogen
 → Results on kaonic hydrogen

 The SIDDHARTA project
 - \rightarrow New X-ray detectors
 - → New SIDDHARTA setup
 - \rightarrow Physics goals, programme
- Summary and Outlook

QCD

BASIC CONCEPTS and STRATEGIES

• "HIGH - Q" (> several GeV) \leftrightarrow SHORT DISTANCE (< 0.1 fm)

- Theory of WEAKLY INTERACTING QUARKS and GLUONS (Perturbative QCD)
- "LOW Q" (<< | GeV) \leftrightarrow LONG DISTANCE (> | fm)

SPONTANEOUS (CHIRAL) SYMMETRY BREAKING

Effective Field Theory of WEAKLY INTERACTING GOLDSTONE BOSONS (Pions)

LATTICE QCD

Large-scale computer simulations on EUCLIDEAN SPACE-TIME Lattices

SIDDHARTA Goal

Measurement of strong interaction induced shift and width of kaonic hydrogen with an accuracy of a few eV and a first measurement of kaonic deuterium.

Motivation

Kaonic hydrogen atoms are ideally suited to study strong interaction with strangeness
 strong interaction shift ε_{1s} and width Γ_{1s} directly observable by X-ray spectroscopy

Kaonic hydrogen: DEAR and KpX but: precision data missing

Kaonic deuterium never measured before

 A extraction of isospin dependent scattering lenghts

Relation of strong interaction shift and width to the complex K⁻p scattering length

$$\varepsilon + i\frac{\Gamma}{2} = \frac{2\pi}{\mu} |\psi_{1s}(0)|^2 a_{K^- p} = 2\alpha^3 \mu^2 a_{K^- p} = 412 \, fm^{-1} \cdot eV \cdot a_{K^- p}$$

(Deser-Goldberger-Baumann-Thirring)

for the determination of the isospin dependent scattering lengths a₀ and a₁ the hadronic shift and width of kaonic hydrogen *and* kaonic deuterium are necessary

$$a_{K^{-}p} = (a_0 + a_1)/2 \qquad a_{K^{-}n} = a_1$$

DA ONE @ LNF

Kaonic X-rays with DEAR

MESON08

Kaonic hydrogen X-rays

PRL 94, 212302 (2005)

PHYSICAL REVIEW LETTERS

week ending 3 JUNE 2005

Measurement of the Kaonic Hydrogen X-Ray Spectrum G. Beer,¹ A. M. Bragadireanu,^{2,3} M. Cargnelli,⁴ C. Curceanu-Petrascu,² J.-P. Egger,⁵ H. Fuhrmann,⁴ C. Guaraldo,² 1500 M. Iliescu,^{2,3} T. Ishiwatari,⁴ K. Itahashi,⁶ M. Iwasaki,⁶ P. Kienle,^{4,7} T. Koike,⁶ B. Lauss,⁸ V. Lucherini,² L. Ludhova,⁹ J. Marton,⁴ F. Mulhauser,⁹ T. Ponta,³ L. A. Schaller,⁹ R. Seki,^{10,11} D. L. Sirghi,^{2,3} F. Sirghi,² and J. Zmeskal⁴ (DEAR Collaboration) K_α 1000 X-ray energy spectrum $K_{high}^{(1)}$ Events /60eV with all background fit-components subtracted 500 0 193 ± 37 (stat.) \pm 6 (syst.) \mathcal{E}_{1s} eV -500 249 ± 111 (stat.) ± 30 (syst.) E_{el.mag}= 6.48 keV At lowest order: e a_{K-p} = (-0.468 ± 0.090stat ± 0.015syst) + 6 7 8 i (0.302 ± 0.135stat ± 0.036syst) fm Energy (keV)

Why SIDDHARTA

- Precision of the DEAR result
 limited by high X-ray
 background (S/B~1:70)
- Next step: background reduction by using kaon – X-ray time correlation; expected background suppression ~ 3 orders of magnitude \rightarrow S/B ~ 10:1 for kaonic hydrogen)

SIDDHARTA

Goal: High precision X-ray spectroscopy using kaonic atoms

- improvement on kaonic hydrogen
- First measurement of kaonic deuterium
- Precise determination of kaonic helium (L-lines)
- → New X-ray detectors SDDs: JRA in I3HP (FP6) cooperation of LNF, MPI-Halbleiterlabor, PNSensor, Politecnico Milano, IFIN-HH and SMI
 - timing capability → background suppression by using the kaon - X ray time correlation
 - excellent energy resolution
 - high efficiency, large solid angle
 - compact versatile design

Large Area SDDs

- SDD has small capacitance → low noise
 Good energy resolution (150 eV @ 6 keV) comparable with CCD
 and good timing capability (At < 0.5 vg)
- and good timing capability ($\Delta t < 0.5 \ \mu s$)

SDD – Silicon Drift Detector

SDD sub-system

MESON08

SIDDHARTA Setup - Inside

Cryogenic target cell

Working T 22 K Working P 2.5 bar Alu-grid Side wall: Kapton 50 µm Kaon entrance Window: Kapton 50 µm

Assembly of SDDs

Assembly of SIDDHARTA

Kaon trigger installed at interaction region
Kaon trigger used as luminosity monitor

ND First kaonic nitrog

SIDDHARTA Programme

Measurement of strong interaction induced shift and width of kaonic hydrogen with an accuracy of a few eV and a first measurement of kaonic deuterium.

MC of kaonic hydrogen

MESON08

MC of kaonic hydrogen background situation today

SIDDHARTA result

Kaonic hydrogen with Day-One BG conditions error in shift ~ ± 10 eV error in width ~ ± 35 eV

Day-one setup successfully running First test of SDDs under beam conditions background tests performed

Final setup to be installed begin of June with improved shielding under improved stable beam conditions

Kaonic hydrogen measurement possible

Kaonic deuterium measurement needs further improvements

further optimization of the beam optic improved vacuum condition (to reduce beam gas interaction) additional shielding