

Forward Spectrometer of PANDA – requirements and solutions

Aleksandra Wrońska Jagiellonian University, Cracow for the PANDA collaboration

MESON2008, Kraków, June 2008

PANDA - future large-scale experiment on HESR at GSI

detector description

preceding talks by A.Biegun and R.Jäkel

- wide physics programme, pbar+p and pbar+A measurements
 - charmonium spectroscopy
 - exotics (hybrids, glueballs)
 - charmed particles in medium
 - $\Lambda\Lambda$ interaction via double Λ -nuclei
 - other...

PANDA: a fixed target experiment

Reaction products boosted forward with CMS momentum Necessity to ensure particle detection and identification at small angles

- Acceptance of FS
 - $\theta_{\chi} < 10$ deg.
 - $\theta_{\gamma} < 5$ deg.

Tasks

- tracking (DCH/STT)
- PID (TOF,RICH)
- measurement of energy (EMC,HCAL)

Physics example: charmonium spectroscopy

Charmonium = "positronium of QCD"

- Layout of charmonium spectrum dependent on the QCD potential →good insight !
- Various theoretical predictions existing
- Many states from the ladder experimentally poorly known, many completely unknown
- Among PANDA benchmark channels: formation of ψ(3770) and ψ(4040)

Options for beam guiding

Two options have been studied:

- guiding of unshielded beam through the dipole magnet
 - beam direction affected by B
 - need to form a chicane in the ring
 - B has to scale with p_{heam}

Simulation study of

- acceptance
- resolution
- background from secondaries
- hit rates and fluxes

for several benchmark channels. **Conclusion**: <u>chicane option wins</u>.

- using an iron plate to schield the beam from B
 - beam goes straight through the dipole
 - for each p_{beam} B=const.
 - acceptance losses and secondary particles in the detector

TOF foreseen with $\sigma(t)=100$ ps works well for low momenta

(π /K separation for p<2 GeV/c K/p separation for p<3.5 GeV/c)

RICH should work where TOF fails: p=(2...15) GeV/c **Proposal:** dual-radiator RICH examples of realisations: HERMES, LHCb radiators: aerogel + gas (C_4F_{10}) First simulation of the geometry done.

Electromagnetic calorimeter

FS: large area to cover higher energies of particles

sampling cal. of shaslyk type meets PANDA requirements and is cheaper than PWO (example of technique: KOPIO)

Techical details:

- 400 layers of Pb and scintillator (ca. 20 X_0)
- *o*(Pb) =0.275 mm
- *d*(scint.)=1.5 mm
- # of fibres / module = 72 or 144
- readout: PMT
- design resolution of 4%/sqrt(E)

Test 3x3 setup at IHEP

Electromagnetic calorimeter – prototype tests

Test setup at IHEP, Protvino: spectrometer and set of 4 DCH

in the test, energy and position resolution were determined for the 3x3 array of 11x11 cm² modules. Results for σ_E : $\sigma_E / E = a / E \oplus b / \sqrt{E} \oplus c$ [%], $a = 3.5 \pm 0.3$ $b = 2.8 \pm 0.2$

 $c = 1.3 \pm 0.04$

Hadron Calorimeter

- Detection of neutral hadrons in particular neutrons and antineutrons – important, e.g. for triggering
- Number of events with a neutral hadron in FS increases with p_{beam} and exceeds 30% for p_{beam} >5 GeV/c (where acceptance of FS for antineutrons > 50%)

- Two options of HCAL considered now:
 - MIRAC type: 8mm steinless steel plates sandwiched with 3.2mm scintillator plates, read out through WLS fibres
 - σE/E = 0.034 ⊕ 0.34/√E
 - idea to refurbish old MIRAC calorimeter; first test measurement done, but inconclusive
 - Muon Filter: 3cm stainless steel plates interlaced with gas detectors
 - allows also to distinguish between charged hadrons and muons

In FS, in particular close to the beam pipe, severe conditions for a conventional tracking detector

- high particle flux (→ageing!)
- high hit rates (->problems for DAQ)

Tracking detectors: DCH

Prototype chamber built in Cracow

- Two double layers with vertical wires
- $\bigcirc \mathcal{O}(active area) = 120 cm$
- $\bigcirc \mathcal{O}(\text{beam-pipe}) = 5 \text{ cm}$

Single drift cell

Layout of double layer sense field cathode wire wire wires

Readout of prototype DCH

Read-out chain:

 Juelich-Cracow preamplifier and discriminator

$\mathbf{\mathbf{V}}$

ECL→ LVDS converter

 128ch. TRB based on HPTDC chips

\checkmark

100 Mb ethernet

Personal Computer

TRB: TDC Readout Board

- possibility to work in a trigger-mode or triggerless-mode (triggered by a clock)
- contains FPGA-programmable unit
- possibility to measure time-over-threshold

Tests performed at COSY-Jülich:

- $p_{beam} = 2.9 \text{ GeV/c}$
- $I_{max} = 5 \cdot 10^6$ protons/s
- max. rate / wire = 1.5 MHz
- max. rate / $cm^2 = 200 \text{ kHz}$

Results:

- Read-out electronics passed the test excellently
- The detection efficiency drops from 96% to 91% when increasing the rate from 12 kHz /cm² to 200 kHz /cm²

More laboratory tests:

- Time-over-threshold (=indirect measurement of Q) measured for ⁵⁵Fe
- Measurement done in the triggerless mode
- Results reveal the expected shape

Summary and Outlook

- Forward Spectrometer is an important part of PANDA
- Different detectors are currently:
 - in the design phase (RICH, HCAL)
 - being in the phase of building and testing the prototypes (EMC, DCH)
- Results of EMC prototype tests yield results in line with simulations, optimisation of module size for PANDA purposes in progress (IHEP)
- Beam and laboratory tests with DCH verified the read-out electronics positively, but drop of efficiency with increasing hit rate is worrying (test other preamplifier: CARIOCA, try with different detector: STRAWS)

PANDA: a fixed target experiment

Reaction products boosted forward with CMS momentum Necessity to ensure particle detection and identification at small angles

- Acceptance of FS
 - $\theta_{\chi} < 10$ deg.
 - $\theta_{\gamma} < 5 \text{ deg.}$

Tasks

- tracking (DCH/STT)
- PID (TOF,RICH)
- measurement of energy (EMC,HCAL)

A.Wrońska, MESON2008

•