Structure of the $\Lambda^*(1405)$ and the Λ^* -Meson-Baryon couplings

C. S. An and B. Saghai

Institut de Recherche sur les lois Fondamentales de l'Univers, DSM/Irfu, CEA/Saclay, F-91191 Gif-sur-Yvette, France

The nature of the $\Lambda^*(1405)$ -resonance, investigated since half a century, bears still puzzling features. Its well established couplings to $\bar{K}N$ and $\pi\Sigma$ states have offered guidance to various theoretical approaches in improving our understanding of that resonance.

Recent achievements [1] in describing non-strange baryons such as the nucleon, Δ -, $P_{11}(1440)$ and $S_{11}(1535)$ -resonances as a superposition of three- and five-quark states bring in new insights to the structure of baryons.

In a recent work [2] a chiral constituent quark model approach was extended to the strangeness sector, studying the $\Lambda^*(1405)$ in a truncated Fock space, which includes threeand five-quark components, as well as configuration mixings among them, namely, $qqq \leftrightarrow qqqq\bar{q}$ transitions. That formalism allowed us to calculate the helicity amplitudes for the electromagnetic decays ($\Lambda(1405) \rightarrow \Lambda(1116)\gamma$, $\Sigma(1194)\gamma$), and transition amplitudes for strong decays ($\Lambda(1405) \rightarrow \Sigma(1194)\pi$, K^-p), as well as the relevant decay widths, namely, $\Gamma_{\Lambda(1405)\rightarrow\Lambda(1116)\gamma}$, $\Gamma_{\Lambda(1405)\rightarrow\Sigma(1193)\gamma}$, and $\Gamma_{\Lambda(1405)\rightarrow\Sigma(1194)\pi}$. The only available experimental value [3], for the strong decay width $\Gamma_{\Lambda(1405)\rightarrow(\Sigma\pi)^\circ} = 50 \pm 2$ MeV, was well reproduced with about 50% of five-quark admixture in the $\Lambda(1405)$.

In this contribution we concentrate on other entities allowing to put further constraints on the percentage of the five-quark component within the Λ^* . Actually, the coupling constants $g_{\Lambda^*\bar{K}N}$ and $g_{\Lambda^*\pi\Sigma}$, as well as the ratio $R = g_{\Lambda^*\bar{K}N}/g_{\Lambda^*\pi\Sigma}$ have been investigated both experimentally [4] and within various theoretical approaches [5]. We will report on the dependence of those entities on the percentage of the five-quark admixture and show that a $\approx 50\%$ probability allows reproducing the experimental value for $R = -2.6 \pm 0.2$.

- Q. B. Li and D. O. Riska, Phys. Rev. C 73, 035201 (2006); *ibid.* Nucl. Phys. A 766, 172 (2006); Phys. Rev. C 74, 015202 (2006); B. Julia-Diaz and D. O. Riska, Nucl. Phys. A 780, 175 (2006); C. S. An and B. S. Zou, Eur. Phys. J. A 39, 195 (2009).
- [2] C. S. An, B. Saghai, S. G. Yuan and J. He, arXiv:1002.4085, to appear in Phys. Rev. C.
- [3] C. Amsler et al. [Particle Data Group], Phys. Lett. B 667, 1 (2008).
- [4] R. D. Tripp *et al.*, Phys. Rev. Lett. **21**, 1721 (1968); O. Braun *et al.*, Nucl. Phys. B **129**, 1 (1977).
- [5] A. W. Martin and K. C. Wali, Nuovo Cim. 31, 1324 (1964); A. W. Martin, *ibid.* 34, 1809 (1964); R. H. Dalitz, T. C. Wong and G. Rajasekaran, Phys. Rev. **153**, 1617 (1967); C. Weil, *ibid.* **161**, 1617 (1967); J. K. Kim and F. Von Hippel, *ibid.* **184**, 1961 (1969); S. Oneda and S. Matsuda, Phys. Rev. D **2**, 887 (1970); J. Soln, *ibid.* D **2**, 2404 (1970); G. C. Oades and G. Rasche, Nuovo Cim. A **42**, 462 (1977).

E-mail: chunsheng.an@cea.fr, bijan.saghai@cea.fr