Strange Hadronic Matter and Kaon Condensation

<u>D. Gazda^{(a),(b)}, E. Friedman^(c), A. Gal^(c) J. Mareš^(a)</u>

 ^(a) Nuclear Physics Institute, 25068 Řež, Czech Republic
^(b) Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, 11519 Prague, Czech Republic
^(c) Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

In this contribution we address the question whether kaon condensation could occur in strongly interacting self-bound strange hadronic matter. In our comprehensive dynamical relativistic mean-field (RMF) calculations of nuclear and hypernuclear systems containing several antikaons we found saturation of \bar{K} separation energy as well as the associated nuclear and \bar{K} density distributions upon increasing the number of \bar{K} mesons [1, 2]. The saturation pattern was found to be a universal feature of these multi-strangeness configurations. It is present across the entire periodic table and independent of the applied RMF model. Since in all cases the \bar{K} separation energy does not exceed 200 MeV, which is considerably short of the threshold value ≈ 320 MeV required for the onset of kaon condensation, we conclude that \bar{K} mesons do not provide the physical "strangeness" degrees of freedom for self-bound strange hadronic matter.

- [1] D. Gazda, E. Friedman, A. Gal, J. Mareš, Phys. Rev. C 77 (2008) 045206.
- [2] D. Gazda, E. Friedman, A. Gal, J. Mareš, Phys. Rev. C 80 (2009) 035205.

E-mail:

gazda@ujf.cas.cz