The ABC Effect and its Energy Dependence in the Double-Pionic Fusion to ${}^{4}\text{He}^{*}$

A. Pricking^(a) for the WASA-at-COSY Collaboration

^(a) Physikalisches Institut, Univ. Tübingen, Germany

The ABC effect – an intriguing low-mass enhancement in the $\pi\pi$ invariant mass spectrum – is known from inclusive measurements of two-pion production in nuclear fusion reactions to the few-body systems d, ³He and ⁴He. Its explanation has been a puzzle since 50 years.

In an effort to solve this long-standing problem by exclusive and kinematically complete high-statistics experiments, we have measured the fusion reactions to d, ³He and ⁴He with WASA at COSY. Here we report on the measurements of the double-pionic fusion reactions $dd \rightarrow^{4}\text{He} \pi^{0}\pi^{0}$ and $dd \rightarrow^{4}\text{He} \pi^{+}\pi^{-}$, which have been carried out at nine beam energy settings in the range $T_{d} = 0.8 - 1.4$ GeV. These measurements cover the full energy region, where the ABC effect has been observed previously in inclusive reactions [1].

The Dalitz plots of the data exhibit at all measured energies a huge low-mass enhancement in the $\pi\pi$ -invariant mass in agreement with previous measurements [1,2]. However, we do not observe a pronounced high-mass enhancement, which is seen in the inclusive data [1] and which is predicted in conventional calculations [3] based on the $NN \to d\pi$ subprocess. The Dalitz plots show also evidence that the $\Delta\Delta$ system is excited in the course of the reaction process, though this excitation is below the nominal $\Delta\Delta$ threshold given by 2 m_{Δ} . These findings are in agreement with the only previous exclusive measurement conducted at $T_p = 1.0$ GeV at CELSIUS-WASA [2].

Our findings for the double-pionic fusion to ⁴He are in accordance with the observations for the basic $pn \rightarrow d\pi^0 \pi^0$ reaction [4-6] pointing to the same fundamental mechanism. In both reactions we observe a resonance-like energy dependence of the total cross section, tentatively attributed to a "ABC resonance", which apparently is robust enough to survive even in nuclei. In the ⁴He case the peak structure in the total cross section appears to be broadened in comparison to the deuteron case. This is consistent with collision broadening, which is well understood, *e.g.*, from excitations of the Δ resonance in nuclei. * supported by BMBF, COSY-FFE(FZ Jülich), DFG (Eur. Graduate School)

- [1] J. Banaigs et al., Nucl. Phys. **B105**, 52 (1976).
- [2] S. Keleta *et al.*, Nucl. Phys. A825, 71 (2009).
- [3] A. Gardestig, G. Fäldt, and C. Wilkin, Phys. Lett. B421, 41 (1998).
- [4] M. Bashkanov et al., Phys. Rev. Lett. 102, 052301 (2009); arXiv: 0806.4942 [nucl-ex].
- [5] M. Bashkanov et al., Proc. PANIC08, Elsevier, 239 (2009); arXiv: 0906.2328 [nucl-ex].

[6] M. Bashkanov *et al.*, contribution to this conference.

E-mail: clement@pit.physik.uni-tuebingen.de