11th International Workshop On Meson Production, Properties And Interaction (MESON 2010)

Measurements of τ Decays into Kaons at BaBar and Determination of |Vus|

Aleksandra Adametz Heidelberg University

Aleksandra Adametz, MESON 2010

Outline

- τ Physics at BaBar
- Theoretical overview
- Experimental determination of |Vus|
 - \rightarrow from inclusive $\tau \rightarrow$ s decays
 - \rightarrow from the ratio

$$\frac{BF(\tau \to K \nu)}{BF(\tau \to \pi \nu)}$$

Conclusion

τ Physics at BaBar

BaBar is a τ factory:

$$\sigma_{\tau\tau} = 0.9 \text{ nb}, (\sigma_{BB} = 1.1 \text{ nb})$$

 $f = 531 \text{ fb}^{-1}$

 \rightarrow 488 million $\tau\tau$ pairs

Areas of τ Physics with recent results:

- precise τ branching fractions
- τ mass
- constraints on Lepton Flavor Violation
- $|V_{us}|$ from strange τ decays

CKM Matrix element |Vus|

Cabibbo-Kobayashi-Maskawa Matrix

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{ud} & V_{cs} & V_{cb} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

• Unitarity condition:

$$V_{ud} |^{2} + |V_{ub}|^{2} + |V_{us}|^{2} = 1$$
negligibly small
$$|V_{us}| = 0.2255 + 0.0010$$

 $|V_{ud}| = 0.97425 \pm 0.00022$ (Towner,Hardy 2009) $|V_{ub}| = (3.93 \pm 0.36) \times 10^{-3}$

Methods of |Vus| determination

$|V_{us}|$ from inclusive $\tau \rightarrow s$ decays

 τ decay rate into hadrons

$$R_{\tau} = \frac{\Gamma(\tau \rightarrow [hadrons] \nu_{\tau})}{\Gamma(\tau \rightarrow e \overline{\nu}_{e} \nu_{\tau})} = R_{\tau,non-strange} + R_{\tau,strange}$$

Branching fractions are experimental input for |Vus| determination:

$$\left|V_{us}\right|^{2} = \frac{R_{\tau, strange}}{\frac{R_{\tau, non strange}}{\left|V_{ud}\right|^{2}} + \delta R_{OPE}}$$

δR is a SU(3) symmetry breaking correction, obtained from OPE/FESR, small; <0.1* Rτ,ns/|Vud|²

OPE = Operator Product Expansion FESR = Finite Energy Sum Rules

(Gamiz et al., 2007)

 V_{us}

Strange τ Decays

Decay	\mathcal{B}_{PD}	G2009	,[%]	$\frac{\Delta \mathcal{B}}{\mathcal{B}}[\%]$
$\tau^- \to K^- \nu_{\tau}$	0.685	\pm	0.023	3.4
$(\tau^- \rightarrow K^- \nu_\tau \text{ [indirect]})$	0.715	\pm	0.004	0.6)
$\tau^- \to K^- \pi^0 \nu_\tau$	0.426	\pm	0.016	3.8
$\tau^- \to K^- \pi^0 \pi^0 \nu_\tau$	0.058	\pm	0.024	30
$\tau^- \to \overline{K}^0 \nu_{\tau}$	0.831	\pm	0.030	5.7
$\tau^- \to \overline{K}^0 \pi^0 \nu_{\tau}$	0.360	\pm	0.040	11
$\tau^- \to K^- \pi^- \pi^+ \nu_\tau$	0.280	\pm	0.002	0.7
$\tau^- \to (\overline{K}\pi\pi\pi)^- \nu_\tau \text{ (est'd)}$	0.074	\pm	0.030	40
$\tau^- \to (\overline{K}\pi\pi\pi\pi)^- \nu_\tau \text{ (est'd)}$	0.011	\pm	0.007	64
$\tau^- \to K_1(1270)\nu_\tau \to K^-\omega$	0.067	\pm	0.021	31
$\tau^- \to K^- \eta \nu_{\tau}$	0.016	\pm	0.001	6.2
$\tau^- \to K^{*-} \eta \nu_{\tau}$	0.013	\pm	0.002	15
$\tau^- \to K^- \phi \nu_\tau$	0.0037	\pm	0.0003	8.1
Total	2.8247	\pm	0.0725	2.6
	(2.8547	\pm	0.0689	2.4)

(*) indirect $\tau \rightarrow K v$

use precise measurement of BF[$K \rightarrow \mu\nu(\gamma)$] to get indirect measurement of BF[$\tau \rightarrow K\nu(\gamma)$] Rev.Mod.Phys. 78 1043 (2006)

Measurement of $\tau \rightarrow K_s^0 \pi \pi^0 v_{\tau}$

red arrows: particles reconstructed with the BaBar detector

(S.Paramesvaran, DPF2009)

Measurement of $\tau \rightarrow K_s^0 \pi \pi^0 v_{\tau}$

- lepton tag on signal side
- high π⁰ energy required in CMS
 → high purity (93%)
- π^{0} trajectory within 90° of K⁰_s π momentum
- τ Monte Carlo hadronic mass distribution
 tuned with data
- Dominant systematic uncertainty:
- \rightarrow π^{0} reconstruction efficiency (0.011%, rel. 3.2%)

BABAR
preliminary
$$BF(\tau \to K_s^0 \pi \pi^0 \nu_{\tau}) = [0.342 \pm 0.006(stat.) \pm 0.015(syst.)]\%$$

Grel. 4.7%

$|V_{us}|$ from inclusive $\tau \rightarrow s$

- |Vus| from K,Hyp,Uni. (A.Denig Chiral2009)
- m (2GeV) = 94 ± 6 MeV

(M.Jamin et al., 2006)

• $\delta R_{OPE} = 0.240 \pm 0.032$

(Gamiz et al., 2007)

- Vud (Towner, Hardy 2009)
- BF($\tau \rightarrow s$) from PDG2009
 - \rightarrow update with new

 $BF(\tau \rightarrow K_{s}^{0}\pi \pi^{0}\nu_{\tau})$

|Vus| precision:

→ before update: 1.31%→ Now: 1.15%

arXiv:0912.0242

|Vus| from ratio $\frac{BF(\tau \rightarrow K\nu)}{BF(\tau \rightarrow \pi\nu)}$

$$\frac{BF(\tau \to K \nu)}{BF(\tau \to \pi \nu)} = \frac{\left|V_{us}\right|^2}{\left|V_{ud}\right|^2} \frac{f_K^2}{f_\pi^2} \left(\frac{1 - m_K^2 / m_\tau^2}{1 - m_\pi^2 / m_\tau^2}\right)^2 \left(1 + \delta_{LD}^{\tau}\right)$$

- δ_{LD} long distance electroweak correction
 (short distance correction cancel) (arXiv:0402299)
- Vud from super allowed beta decays (Towner, Hardy 2009)
- ratio f_{K}^{2}/f_{π}^{2} from lattice QCD (E. Follana et al. PRL 100)

Select $\tau\tau$ events with

- one τ decaying into 3 charged pions and neutrino (hadronic tag)
- the other τ into the signal decay

$$\begin{array}{l} \text{Measure:} \quad \frac{BF(\tau^{\bar{}} \to \pi^{\bar{}} \nu_{\tau})}{BF(\tau^{\bar{}} \to e^{\bar{}} \nu_{\tau} \overline{\nu}_{e})} \quad \frac{BF(\tau^{\bar{}} \to K^{\bar{}} \nu_{\tau})}{BF(\tau^{\bar{}} \to e^{\bar{}} \nu_{\tau} \overline{\nu}_{e})} \quad \frac{BF(\tau^{\bar{}} \to K^{\bar{}} \nu_{\tau})}{BF(\tau^{\bar{}} \to e^{\bar{}} \nu_{\tau} \overline{\nu}_{e})} \end{array}$$

 Systematic effects cancel in the ratios (e.g. uncertainties of efficiencies, luminosity)

M. Roney CIPANP 2009

$\frac{BF(\tau \to K \nu)}{BF(\tau \to \pi \nu)} \text{ results}$

-	$0.03883 \pm 0.00032 \pm 0.00057$	$0.5945 \pm 0.0014 \pm 0.0014$	0061	
	$(0.692 \pm 0.006 \pm 0.010)\%$	$(10.59 \pm 0.03 \pm 0.1$	(1)%	
	$(0.685 \pm 0.023)\%$	(10.828 ± 0.105)	%	
	B(τ ⁻ →K ⁻ ν _τ)/B(τ	$\tau \rightarrow \pi^{-} \nu_{\tau}$)		

 $\tau \to \pi \nu_{\tau}$

 $\tau \to K \nu_{\tau}$

$$(0.031\pm0.000\pm0.093)$$
X10⁻

Systematic uncertainties:	$B(\pi)/B(e)$	B(K)/E	B (e)
Particle ID	0.51	0.94	
Detector response	0.64	0.54	next
Backgrounds	0.44	0.85	slide
Trigger	0.10	0.10	
$\pi^{-}\pi^{-}\pi^{+}$ modelling	0.07	0.27	
Radiation	0.10	0.04	
${\cal B}(au^- o \pi^- \pi^- \pi^+ u_ au)$	0.15	0.40	
$\mathcal{L}\sigma_{e^+e^- ightarrow au^+ au^-}$	0.39	0.20	
Total [%]	1.0	1.5	

PID uncertainty in $\frac{BF(\tau \rightarrow K\nu)}{BF(\tau \rightarrow \pi\nu)}$ analysis

One of the dominant systematic effects: charged particle identification

- PID algorithm performance is studied using control samples
- PID algorithm is applied to unbiased track of known type to determine the efficiency in data and simulation: differences are corrected

Kaon and pion identification

• Studied using two independent control samples

A control pion and a control kaon is kinematically selected in the decay chain:

$$D^{*+} \to \pi^{+}_{soft} D^{0}$$
$$D^{0} (\to \pi^{+} K^{-})$$

control pion has same charge as soft π
control kaon has opposite charge as soft π

Additional cross check:

- τ decays in 3 charged tracks
 - determine particle ID of two tracks
 - 3rd track is control pion/kaon

Pion control sample: $\tau \to \pi^- \pi^- \pi^- \pi^+ \nu_{\tau}$ Kaon control sample: $\tau \to K^- \pi^- K^+ \nu_{\tau}$

Electron and Muon identification: Bhabha and radiative μ -pair control samples

 $\rightarrow e/\mu/\pi/K$ PID efficiency uncertainties are combined to a total PID uncertainty (previous slide)

(arXiv:0811.1429)

- |Vud|= 0.97425 ± 0.00022 (Towner, Hardy 2009)
- $f_{\kappa}/f_{\pi} = 1.189 \pm 0.007$ (E. Follana et al. PRL 100)

Vus consistent with unitarity

Conclusion

Unitarity	0.2255 ± 0.0010
inclusive $\tau \rightarrow s$	0.2155 ± 0.0025
$\frac{BF(\tau \to K \nu)}{BF(\tau \to \pi \nu)}$	0.2255 ± 0.0023

- |Vus| from BF ratio consistent with unitarity.
- $|V_{us}|$ from inclusive $\tau \rightarrow s$ decays: ~3 σ discrepancy from unitarity. However:
 - Program of $\tau \to s$ measurements not yet completed. (Only estimates for $\tau^- \to (\overline{K}\pi\pi\pi)^-\nu_{\tau}$, $\tau^- \to (\overline{K}\pi\pi\pi\pi)^-\nu_{\tau}$).
 - Neglected correlations between BF measurements.
 - \rightarrow The recently formed HFAG-tau group is addressing that.
 - Theorists are re-examining the FESR calculation of δR .