

$\pi\pi$ scattering from low to high energy

Gilberto Colangelo

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

MESON 2010, Krakow, June 15. 2010

Outline

Introduction

Low energy

High energy* Phenomenological inputs *D* and *F* waves Constraints on high-energy behaviour

Summary

* Work in progress together with Irinel Caprini and Heiri Leutwyler

Outline

Introduction

Low energy

High energy* Phenomenological inputs *D* and *F* waves Constraints on high-energy behaviour

Summary

Why is $\pi\pi$ scattering interesting

- pions = Goldstone bosons of spontaneous χ SB of QCD
- $m_{u,d}/\Lambda_{\text{QCD}} \sim \text{percent} \Rightarrow$ high precision possible
- S-matrix approach: ππ scattering amplitude related only to itself, also in crossed channels (s < s_{inel})
- the two scattering lengths (subtractions constants) are the essential parameters at low energy
- ► conversely, many other observables are influenced by the $\pi\pi$ interaction in intermediate or final states (e.g. $K \to 2\pi, 3\pi, \eta \to 3\pi, (g-2)_{\mu}, \pi N \to \pi N, pp \to pp\pi^+\pi^-$, etc.) see talks by Kupść, Lebiedowicz

Chiral symmetry + Roy equations

Approach adopted here:

► ChPT:

expansion of $A(\pi\pi \rightarrow \pi\pi)$ in powers of m_q and p

dispersion relations:

- exact mathematical condition
- only two free parameters at low energy
- ► ⇒ ChPT fixes the two subtraction constants

 \Rightarrow Roy equation solutions: amplitude at any energy

Chiral symmetry + Roy equations

Outline

Introduction

Low energy

High energy* Phenomenological inputs *D* and *F* waves Constraints on high-energy behaviour

Summary

Roy equations

Unitarity, analyticity and crossing symmetry \equiv Roy equations

S.M. Roy (71)

$$\operatorname{Re} t_{0}^{0}(s) = k_{0}^{0}(s) + \int_{4M_{\pi}^{2}}^{s_{0}} ds' K_{00}^{00}(s, s') \operatorname{Im} t_{0}^{0}(s') \\ + \int_{4M_{\pi}^{2}}^{s_{0}} ds' K_{01}^{01}(s, s') \operatorname{Im} t_{1}^{1}(s') \\ + \int_{4M_{\pi}^{2}}^{s_{0}} ds' K_{00}^{02}(s, s') \operatorname{Im} t_{0}^{2}(s') + t_{0}^{0}(s) + d_{0}^{0}(s) \\ k_{0}^{0}(s) = a_{0}^{0} + \frac{s - 4M_{\pi}^{2}}{12M_{\pi}^{2}} (2a_{0}^{0} - 5a_{0}^{2}) \\ t_{0}^{0}(s) = \sum_{l'=0}^{2} \sum_{\ell'=0}^{1} \int_{s_{0}}^{s_{0}} ds' K_{0\ell'}^{0\ell'}(s, s') \operatorname{Im} t_{\ell'}^{\ell'}(s') \\ d_{0}^{0}(s) = \operatorname{all the rest} \qquad [\sqrt{s_{0}} = 0.8 \operatorname{GeV} \quad \sqrt{s_{3}} = 2 \operatorname{GeV}]$$

Roy equations

Unitarity, analyticity and crossing symmetry \equiv Roy equations

S.M. Roy (71)

Numerical solutions of the Roy equations

Pennington-Protopopescu, Basdevant-Froggatt-Petersen (70s) Ananthanarayan, GC, Gasser and Leutwyler (00) Descotes-Genon, Fuchs, Girlanda and Stern (01) Kamiński, Peláez and Ynduráin (08)

Input: S- and P-wave imaginary parts above 0.8 GeV imaginary parts of all higher waves two subtraction constants, *e.g.* a_0^0 and a_0^2

Output: the full $\pi\pi$ scattering amplitude below 0.8 GeV Note: a_0^0, a_0^2 inside the universal band \Rightarrow the solution is unique

Introduction Low energy High energy Summary

Roy+ChPT: final results

GC, Gasser and Leutwyler (01)

Phase shifts:

Roy+ChPT: final results

GC, Gasser and Leutwyler (01)

Phase shifts:

GC, Gasser and Leutwyler (01)

 $\begin{array}{lll} a_0^0 &=& 0.220 \pm 0.001 + 0.009 \Delta \ell_4 - 0.002 \Delta \ell_3 \\ 10 \cdot a_0^2 &=& -0.444 \pm 0.003 - 0.01 \Delta \ell_4 - 0.004 \Delta \ell_3 \end{array}$

where
$$\bar{\ell}_4 = 4.4 + \Delta \ell_4$$
 $\bar{\ell}_3 = 2.9 + \Delta \ell_3$ Adding errors in quadrature $[\Delta \ell_4 = 0.2, \Delta \ell_3 = 2.4]$

$$egin{array}{rcl} a_0^0&=&0.220\pm 0.005\ 10\cdot a_0^2&=&-0.444\pm 0.01\ a_0^0-a_0^2&=&0.265\pm 0.004 \end{array}$$

GC, Gasser and Leutwyler (01)

$$a_0^0 = 0.220 \pm 0.001 + 0.009 \Delta \ell_4 - 0.002 \Delta \ell_3$$

10 \cdot a_0^2 = -0.444 \pm 0.003 - 0.01 \Delta \lambda_4 - 0.004 \Delta \lambda_3

where
$$ar{\ell}_4=4.4+\Delta\ell_4$$
 $ar{\ell}_3=2.9+\Delta\ell_3$

Adding errors in quadrature

 $[\Delta\ell_4=0.2,\,\Delta\ell_3=2.4]$

$$\begin{array}{rcl} a_0^0 &=& 0.220 \pm 0.005 \\ 10 \cdot a_0^2 &=& -0.444 \pm 0.01 \\ a_0^0 - a_0^2 &=& 0.265 \pm 0.004 \end{array}$$

Peláez and Ynduráin have criticized these results Claim 1: our input above 1.4 GeV is not correct (PY 03) The criticism has been answered (Caprini *et al.* 03)

GC, Gasser and Leutwyler (01)

$$a_0^0 = 0.220 \pm 0.001 + 0.009 \Delta \ell_4 - 0.002 \Delta \ell_3$$

10 \cdot a_0^2 = -0.444 \pm 0.003 - 0.01 \Delta \lambda_4 - 0.004 \Delta \lambda_3

where
$$ar{\ell}_4=4.4+\Delta\ell_4$$
 $ar{\ell}_3=2.9+\Delta\ell_3$

Adding errors in quadrature

 $[\Delta\ell_4=0.2,\,\Delta\ell_3=2.4]$

$$\begin{array}{rcl} a_0^0 &=& 0.220 \pm 0.005 \\ 10 \cdot a_0^2 &=& -0.444 \pm 0.01 \\ a_0^0 - a_0^2 &=& 0.265 \pm 0.004 \end{array}$$

Peláez and Ynduráin have criticized these results Claim 2: our calculation for $\langle r^2 \rangle_s$ is not correct (Y, 04) The criticism has been answered (Ananthanarayan *et al.* 04)

Recent update: E865 corrected their data

Recent update: E865 corrected their data

isospin breaking corrections recently calculated for K_{e4} are essential at this level of precision GC, Gasser, Rusetsky (09)

isospin breaking corrections recently calculated for K_{e4} are essential at this level of precision GC, Gasser, Rusetsky (09)

Figure from NA48/2 Eur.Phys.J.C64:589,2009

Outline

Introduction

Low energy

High energy* Phenomenological inputs *D* and *F* waves Constraints on high-energy behaviour

Summary

Extensions and improvements

The ACGL Roy analysis can be extended/improved:

- High energy part (Regge) had been taken from the literature
 - new information has become available (e.g. Compete)
 - various sum rules put constraints on Regge (considered only partially in ACGL)
- ► D and F waves (⇒ driving terms) taken from the literature Roy equations can be solved for them too
- ► Roy equations valid up to 68M²_π ~ (1.15GeV)² region 0.8 < √s < 1.15 GeV can be constrained further</p>
- ► more data available after 2001 (πN → ππN with polarized targets Kamiński, Lesniak and Rybicki) and (e⁺e⁻ → π⁺π⁻ cross section, CMD-2, SND, KLOE, and more recently BABAR)

Roy equations extended: impact of $s_0 \rightarrow s_1$

$$\operatorname{Re} t_{0}^{0}(s) = k_{0}^{0}(s) + \int_{4M_{\pi}^{2}}^{s_{1}} ds' K_{00}^{00}(s, s') \operatorname{Im} t_{0}^{0}(s') \\ + \int_{4M_{\pi}^{2}}^{s_{1}} ds' K_{01}^{01}(s, s') \operatorname{Im} t_{1}^{1}(s') \\ + \int_{4M_{\pi}^{2}}^{s_{1}} ds' K_{00}^{02}(s, s') \operatorname{Im} t_{0}^{2}(s') + f_{0}^{0}(s) + d_{0}^{0}(s) \\ k_{0}^{0}(s) = a_{0}^{0} + \frac{s - 4M_{\pi}^{2}}{12M_{\pi}^{2}} (2a_{0}^{0} - 5a_{0}^{2}) \\ f_{0}^{0}(s) = \sum_{l'=0}^{2} \sum_{\ell'=0}^{1} \int_{s_{1}}^{s_{2}} ds' K_{0\ell'}^{0l'}(s, s') \operatorname{Im} t_{\ell'}^{l'}(s') \\ d_{0}^{0}(s) = \text{ all the rest}$$

 $\sqrt{s_1} = 1.15 \text{GeV}$ $\sqrt{s_2} \sim 1.7 \text{GeV}$

Roy equations extended: impact of $s_0 \rightarrow s_1$

Multiplicity of the solution ⇔ value of the phases at the matching point: Epele, Wanders (77), Gasser, Wanders (99)

- $\sqrt{s_0} = 0.8 \text{ GeV} \Rightarrow$ unique solution (ACGL)
- $\sqrt{s_1} = 1.15 \text{ GeV} \Rightarrow 3 \text{ free parameters}$

If $s_1 > s_{inel} \Rightarrow$ need input on $\eta_{\ell}^{\prime}(s)$

Free parameters

Input phases – need to know:

 $[\sqrt{s_0}=0.8~\text{GeV},\,\sqrt{s_1}=1.15~\text{GeV}]$

three input phases for the S0 wave:

$$\begin{split} \delta_0^0(s_0) &= \begin{cases} 82.3^\circ \pm 3.4^\circ & \text{narrow range (ACGL 00)} \\ 82.3^\circ \frac{+10^\circ}{-4^\circ} & \text{broad range (CCL 06)} \end{cases} \\ \delta_0^0(4M_K^2) &= 185^\circ \pm 10^\circ \\ \delta_0^0(s_1) &= 260^\circ \pm 10^\circ \end{split}$$

two input phases for the P wave

$$\begin{array}{rcl} \delta_1^1(s_0) &=& (108.9\pm2)^\circ \\ \delta_1^1(s_1) &=& (166.5\pm2)^\circ \end{array}$$

Conservative range: ${\rm e}^+{\rm e}^- \to \pi^+\pi^-$ data more precise

• no input phase for the S2 wave: $a_0^2 \Rightarrow \delta_0^2(s_1)$

Imaginary parts:

Im t₁¹

Imaginary parts:

 $\operatorname{Imt}_{0}^{2}$

Inelasticities:

Flowchart of the analysis

$$\operatorname{Re} t_{2}^{0}(s) = + \int_{4M_{\pi}^{2}}^{s_{1}} ds' \mathcal{K}_{22}^{00}(s, s') \operatorname{Im} t_{2}^{0}(s') \\ + \int_{4M_{\pi}^{2}}^{s_{1}} ds' \mathcal{K}_{23}^{01}(s, s') \operatorname{Im} t_{3}^{1}(s') \\ + \int_{4M_{\pi}^{2}}^{s_{1}} ds' \mathcal{K}_{22}^{02}(s, s') \operatorname{Im} t_{2}^{2}(s') + f_{2}^{0}(s) + d_{2}^{0}(s) \\ f_{2}^{0}(s) = \sum_{l'=0}^{2} \sum_{\ell'=0}^{1} \int_{s_{1}}^{s_{2}} ds' \mathcal{K}_{2\ell'}^{0\ell'}(s, s') \operatorname{Im} t_{\ell'}^{l'}(s') \\ d_{2}^{0}(s) = S, P, G \text{ and higher waves, high energy}$$

Here the "driving terms" dominate the rhs at low energy: the S and P wave contributions fix to a large extent the D, F and higher waves

see also poster by R. Kamiński

Flowchart of the analysis

Regge representation

Regge formulae for imaginary parts at fixed I_t

$$Im \mathcal{T}^{l_{t}=0}(s,t) = \beta_{P}(t) \left(\frac{s}{\bar{s}}\right)^{\alpha_{P}(t)} + \mathcal{B}\log^{2}(s/s_{B}) + \beta_{f}(t) \left(\frac{s}{\bar{s}}\right)^{\alpha_{f}(t)}$$
$$Im \mathcal{T}^{l_{t}=1}(s,t) = \beta_{\rho}(t) \left(\frac{s}{\bar{s}}\right)^{\alpha_{\rho}(t)}$$
$$Im \mathcal{T}^{l_{t}=2}(s,t) = \beta_{e}(t) \left(\frac{s}{\bar{s}}\right)^{\alpha_{e}(t)}$$

COMPETE collaboration: phenomenological determination of these parameters

Peláez and Ynduráin have also determined these parameters independently, specifically for $\pi\pi$ scattering

Sum rules and asymptotic behaviour

Roy equations do not account for all known constraints:

• in the $I_t = 1$ channel, one subtraction less is necessary \Rightarrow Olsson sum rule

$$2a_0^0 - 5a_0^2 = \frac{M_\pi^2}{8\pi^2} \int_{4M_\pi^2}^{\infty} \frac{2\operatorname{Im} T^0(s,0) + 3\operatorname{Im} T^1(s,0) - 5\operatorname{Im} T^2(s,0)}{s\left(s - 4M_\pi^2\right)}$$

• extend the sum rule to any $t \leq 0$

$$\int_{4M_{\pi}^{2}}^{\infty} ds \, \frac{2 \, \mathrm{Im} \, \bar{T}^{0}(s,t) + 3 \, \mathrm{Im} \, \bar{T}^{1}(s,t) - 5 \, \mathrm{Im} \, \bar{T}^{2}(s,t)}{12 \, s \, (s+t-4M_{\pi}^{2})} \\ - \int_{4M_{\pi}^{2}}^{\infty} ds \, \frac{(s-2M_{\pi}^{2}) \, \mathrm{Im} \, T^{1}(s,0)}{s \, (s-4M_{\pi}^{2}) \, (s-t) \, (s+t-4M_{\pi}^{2})} = 0$$

crossing symmetry not fully implemented

 \Rightarrow one *t*-dependent sum rule in each I_t channel S and P waves do not enter these

Our approach:

• the trajectories $\alpha_i(t)$ and some residues (e.g. $\beta_P(0)$) are well known phenomenologically: $[\alpha' \text{ values in GeV}^{-2}]$

 $\begin{array}{lll} \beta_{P}(0) = 94 \pm 1 & \beta_{f} = 69 \pm 2 & \bar{B} = 0.025 \pm 0.001 \\ \alpha_{P}(0) = 1 & \alpha_{f}(0) = 0.54 \pm 0.05 & \alpha_{\rho}(0) = 0.45 \pm 0.02 & \alpha_{\theta}(0) = 0 \\ \alpha'_{P}(0) = 0.25 \pm 0.05 & \alpha'_{f}(0) = 0.90 \pm 0.05 & \alpha_{\rho}(0) = 0.91 \pm 0.02 & \alpha'_{\theta}(0) = 0.5 \pm 0.1 \end{array}$

 the low-energy contribution to the integrals are determined by the solution to the Roy equations

 \Rightarrow use the sum rules to determine the unknown residues $\beta_i(t)$

Example: Olsson sum rule

$$2a_0^0 - 5a_0^2 = \frac{M_\pi^2}{8\pi^2} \int_{4M_\pi^2}^{s_2} \text{[partial w.]} + \beta_\rho(0) \frac{3M_\pi^2}{4\pi^2} \int_{s_2}^\infty \frac{(s/\bar{s})^{\alpha_\rho(0)}}{s(s-4M_\pi^2)}$$

- In this way we tune the Regge residues such that the integrals below and above \sim 1.7 GeV match exactly

- Moreover we also make sure that the imaginary parts (cross sections) are continuous at \sim 1.7 GeV

 In order to do this we multiply the Regge representations with "preasymptotic terms":

$$\operatorname{Im} T^{l_t}(s,t) = \operatorname{Im} T^{l_t}_{\operatorname{Regge}}(s,t) \left(1 + r_{l_t} \frac{\overline{s}}{\overline{s}}\right)$$

and tune the parameter r_{l_t} accordingly *e.g.* for $l_t = 1$ we get:

$$\beta_{\rho}(0) = 97 \pm 13$$
 $r_1 = -1.4 \pm 0.5$

- In this way we tune the Regge residues such that the integrals below and above \sim 1.7 GeV match exactly

- Moreover we also make sure that the imaginary parts (cross sections) are continuous at \sim 1.7 GeV

 In order to do this we multiply the Regge representations with "preasymptotic terms":

$$\operatorname{Im} T^{l_t}(s,t) = \operatorname{Im} T^{l_t}_{\operatorname{Regge}}(s,t) \left(1 + r_{l_t} \frac{\overline{s}}{s} \right)$$

and tune the parameter r_{l_t} accordingly

• We also fix the *t*-dependence of the residues (profile) by continuity

$$\beta_X(t) \equiv \beta_X(0) b_X(t)$$

Work in progress with I. Caprini and H. Leutwyler

Work in progress with I. Caprini and H. Leutwyler

Work in progress with I. Caprini and H. Leutwyler

Flowchart of the analysis

Driving terms

The iterative determination of the driving terms converges immediately:

Application: fit to the vector form factor

Outline

Introduction

Low energy

High energy* Phenomenological inputs *D* and *F* waves Constraints on high-energy behaviour

Summary

Summary

- the ππ scattering amplitude at low energy can be predicted with high accuracy thanks to a combination of chiral symmetry and dispersion relations
- experiments (E865, DIRAC and NA48) are reaching the same level of accuracy and confirm the theory predictions
- I have presented an extension of the Roy equation analysis to higher energy and higher partial waves
- no significant changes at low energy (< 0.8 GeV), but a much better control on the high-energy part
- this provides essential information to analyses of other processes where ππ scattering plays a role (e.g. η → 3π or (g − 2)_μ, pp → ppππ)

Inelasticities

eta11

Inelasticities

 η_0^2

Cross sections

Cross sections

 $\sigma^{(2)}$