The kaonic atoms 'puzzle': what next?

E. Friedman

Racah Institute of Physics, Hebrew University, Jerusalem

MESON 2010, Krakow, June 2010

OUTLINE

- Kaonic atoms as an itermediate scenario
- Deep or shallow real potential?
- Consequences for neutron stars
- Consequences for $\bar{K}NNN...$ clusters
- Radial sensitivity
- Reduced data and proposed experiments

Different scenarios for different exotic atoms

particle	real potl.	imaginary potl.	comments
π^-	repulsive in bulk	moderate	excellent data
	attractive on surface		well understood
K^{-}	attractive	moderate	good data
	deep or shallow?		open problems
\bar{p}	??	very absorptive	excellent data
			understood

Phenomenological analyses of data:

- handle large sets of data
- Could identify characteristic quantities
- serve as intermediaries between 'genuine' theories and experiment (e.g. in reproducing the characteristic quantities)

Tools of the trade: variants of an optical potential.

When analyzing several nuclear species together one must have some model for the nuclear geometry, e.g. make the potential a functional of the nuclear density. The simplest class of optical potentials V_{opt} is the generic $t\rho(r)$ potential:

$$2\mu V_{\rm opt}(r) = -4\pi (1 + \frac{A-1}{A}\frac{\mu}{M}) \{ b_0[\rho_n(r) + \rho_p(r)] + b_1[\rho_n(r) - \rho_p(r)] \}$$

 $\rho_n \text{ and } \rho_p$ are the neutron and proton density distributions normalized to the number of neutrons Nand number of protons Z, respectively, M is the mass of the nucleon.

Global fits to kaome atoms data (05 points)							
model	χ^2	$-\mathrm{Re}V(0)$ (MeV)	$-\mathrm{Im}V(0)~(\mathrm{MeV})$				
t ho	130	$81(\pm 10\%)$	$122(\pm 5\%)$				
t(ho) ho	84	$180(\pm 3.5\%)$	$82(\pm 8\%)$				
chiral $*$	266	33	45				
chiral **	120	42	62				

Clobal fita ta baania atama data (65 nainta)

*Ramos & Oset, NPA 671 (2000) 481

** I=1 adjusted by +50% and +63% for Re and Im, respectively

In brackets values of χ^2 for 65 data points.

Nuclear Physics A579 (1994) 518-538

NUCLEAR PHYSICS A

Density-dependent K⁻ nuclear optical potentials from kaonic atoms

E. Friedman^a, A. Gal^a, C.J. Batty^b

^a Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel ^b Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK

Received 15 February 1994; revised 11 May 1994

On the list of most cited NPA papers in 1995. 159 citations till May 2010 Kaon condensation in neutron stars, when weak decays are Pauli blocked:

$$n \to p + K^-,$$

 $e^- \to K^- + \nu_e.$

Strangeness makes the Equation of State softer.

From Pons *et.al* PRC **62** 035803 (2000)

From J. Schaffner-Bielich, arXiv:1002.1658 (Feb. 2010)

From W. Weise, ECT* Trento, October 2009

.

13

From N. Hermann, ECT* Trento, October 2009

Available online at www.sciencedirect.com

Nuclear Physics A 770 (2006) 84–105

\bar{K} -nuclear bound states in a dynamical model

J. Mareš^a, E. Friedman^{b,*}, A. Gal^b

^a Nuclear Physics Institute, 25068 Řež, Czech Republic ^b Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

Received 5 January 2006; received in revised form 2 February 2006; accepted 24 February 2006

Available online 10 March 2006

(60 citations till May 2010)

The importance of widths!

Define η by $r = R_c + \eta a_c$. The value of χ^2 becomes a functional of a global optical potential $V(\eta)$.

The variation of χ^2 due to a small change in η is

$$d\chi^2 = \int d\eta \frac{\delta\chi^2}{\delta V(\eta)} \delta V(\eta) \;,$$

where

$$\frac{\delta\chi^2[V(\eta)]}{\delta V(\eta')} =$$

$$\lim_{\sigma \to 0} \lim_{\epsilon_V \to 0} \frac{\chi^2 [V(\eta) + \epsilon_V \delta_\sigma(\eta - \eta')] - \chi^2 [V(\eta)]}{\epsilon_V}$$

is the functional derivatives (FD) of $\chi^2[V]$.

The FD can be approximated by

$$\approx \frac{1}{V(\eta')} \frac{\chi^2 [V(\eta)(1 + \epsilon \delta_\sigma(\eta - \eta'))] - \chi^2 [V(\eta)]}{\epsilon} .$$

The limit $\epsilon \to 0$ is obtained numerically for several values of σ and then extrapolated to $\sigma = 0$.

In practice the calculation of the FD was carried out by multiplying the best fit potential by a factor

$$f = 1 + \epsilon \delta_{\sigma} (\eta - \eta') \tag{1}$$

using a normalized Gaussian with a range parameter σ for the smeared δ -function,

$$\delta_{\sigma}(\eta - \eta') = \frac{1}{\sqrt{2\pi\sigma}} e^{-(\eta - \eta')^2/2\sigma^2}.$$
 (2)

N. Barnea, E. Friedman, PRC **75** (2007) 022202(R).

Overlap of K^- atomic density with the nuclear density. $R_B = 31.5$ fm.

Functional derivatives for antiprotonic atoms χ^2

Overlap of \bar{p} atomic density with the nuclear density. $R_B = 26.1$ fm.

Focusing on targets with large χ^2 for the shallow potential:

- conflicting χ_{Γ} and χ_{Y} , i.e. no systematics
- when removed from data base, still the same two solutions (deep and shallow)

The two solutions are inherent property of the data.

Comparing full and 'less' data sets

Ν	χ^2	$\operatorname{Re}b(\operatorname{fm})$	$\mathrm{Im}b(\mathrm{fm})$	χ^2	${\rm Re}B({\rm fm})$	$\mathrm{Im}B(\mathrm{fm})$
65	130	$0.62 {\pm} 0.05$	0.93 ± 0.04	84	1.44 ± 0.03	$0.59 {\pm} 0.03$
56	78	$0.57 {\pm} 0.05$	$0.97 {\pm} 0.04$	66	1.44 ± 0.04	$0.60 {\pm} 0.04$
shallow					dee	p

Removing data for C, Mg and Si (three different experiments!) the two solutions are still there.

target	С	Si	Ni	Sn	Pb
ref	(a)	(b)	(b),(c)	(b)	(d)
(n,l)	$2\mathrm{p}$	3d	$4\mathrm{f}$	$5\mathrm{g}$	7i
$-\epsilon \; (\mathrm{keV})$	0.50 ± 0.08	0.130 ± 0.015	0.223 ± 0.042	0.41 ± 0.18	0.020 ± 0.012
$\Gamma ~({\rm keV})$	1.73 ± 0.15	0.800 ± 0.033	1.03 ± 0.12	3.18 ± 0.64	0.37 ± 0.15
yield	0.070 ± 0.013	0.49 ± 0.03	0.30 ± 0.08	0.39 ± 0.07	0.70 ± 0.08
Γ_u (eV)	0.99 ± 66	0.53 ± 0.06	5.9 ± 2.3	15.1 ± 4.4	4.1 ± 2.0
EM $n+1 \rightarrow n$					
energy (keV)	63.3	123.7	231.6	403.9	426.2

Typical quantities for the reduced set of kaonic atoms

(a) PLB **38** 181 (1972)

(b) NPA **329** 407 (1979)

(c) NPA **231** 477 (1974)

(d) NPA **254** 381 (1975)

Comparing full and reduced data sets

Ν	χ^2	$\operatorname{Re}b(\operatorname{fm})$	$\mathrm{Im}b(\mathrm{fm})$	χ^2	${\rm Re}B({\rm fm})$	$\mathrm{Im}B(\mathrm{fm})$
65	130	$0.62 {\pm} 0.05$	0.93 ± 0.04	84	1.44 ± 0.03	$0.59 {\pm} 0.03$
12	37	$0.80 {\pm} 0.15$	$0.95 {\pm} 0.12$	22	$1.47 {\pm} 0.05$	$0.56 {\pm} 0.06$
shallow					dee	p

Fits to a reduced data set of C, Si, Ni and Pb produce all the features obtained from fits to the full data.

Shallow best-fit kaonic atoms potentials

targets	N	χ^2	$\operatorname{Re}(\operatorname{fm})$	Im(fm)
all	65	130	0.59 ± 0.05	0.94 ± 0.05
C, Si, Ni, Sn, Pb	15	44	0.78 ± 0.13	0.92 ± 0.11
C, Si, Ni, Pb	12	37	0.80 ± 0.15	0.95 ± 0.12
C, Si, Ni, Sn,	12	43	0.78 ± 0.15	0.90 ± 0.14
Si, Ni, Sn,	9	31	0.68 ± 0.16	0.91 ± 0.14

Deep best-fit kaonic atoms potentials

targets	N	χ^2	$\operatorname{Re}(\operatorname{fm})$	Im(fm)
all	65	84	1.44 ± 0.03	0.59 ± 0.03
C, Si, Ni, Sn, Pb	15	26	1.47 ± 0.05	0.55 ± 0.06
C, Si, Ni, Pb	12	22	1.47 ± 0.05	0.56 ± 0.06
C, Si, Ni, Sn,	12	24	1.47 ± 0.05	0.55 ± 0.06
Si, Ni, Sn,	9	13	1.47 ± 0.05	0.52 ± 0.05

Summary

- Kaonic atoms favour deep real K^- -nucleus potential.
- Deep potentials have consequences for neutron stars and for $K^-NNN...$ clusters.
- Functional-derivative analysis shows sensitivity to the interior.
- Fits to reduced data sets reveal all the features of full fits.
- 4-5 targets are proposed for new measurements.