\bar{K} nuclear interactions and dynamics

Avraham Gal

Racah Institute of Physics, Hebrew University, Jerusalem

- $\bar{K}N \pi Y$ dynamics and studies of K^-pp
- \bar{K} -nucleus potentials from K^- atoms (see Friedman's talk)
- Narrow \overline{K} nuclear quasibound states?
- \bar{K} in multistrange matter; \bar{K} condensation?

 NPA 804 (2008)
 NPA 835 (2010)
 [HYP-X]

 and many other reports in MESON 2010

J. Schaffner-Bielich, NPA 804 (2008) 309

RMF calculation of baryon & lepton fractions in neutron star matter Strangeness acts for densities $\geq 2.5\rho_0$; why not $\Lambda \to p + K^-$?

N.K. Glendenning, J. Schaffner-Bielich, PRC 60 (1999) 025803 Lepton depletion $\ell^- \to K^- + \nu_{\ell}$ occurs for $\rho \geq 3\rho_0$ However, hyperons abort K^- condensation in neutron-star matter

$\overline{K}N - \pi Y$ dynamics and studies of K^-pp

Weinberg-Tomozawa leading chiral SU(3)effective ps meson - baryon potential

Zero-range limit of F-type SU(3) vector-meson exchange; introduce form factors fitted to low-energy data

$$V_{ij}(\sqrt{s}) = -\frac{C_{ij}}{4f^2} (2\sqrt{s} - M_i - M_j) \sqrt{\frac{E_i + M_i}{2M_i}} \sqrt{\frac{E_j + M_j}{2M_j}}$$

$$C_{\bar{K}N-\pi\Sigma}^{I=0}$$
 diagonal = 3, 4, and off-diagonal = $-\sqrt{3/2}$
 $C_{\bar{K}N-\pi\Sigma-\pi\Lambda}^{I=1}$ diagonal = 1, 2, 0, and $\bar{K}N$ off-diagonal = $-1 - \sqrt{3/2}$

$$V_{ij} \to T_{ij}$$
: $T_{ij}(\sqrt{s}) = V_{ij}(\sqrt{s}) + V_{il}(\sqrt{s}) G_l(\sqrt{s}) T_{lj}(\sqrt{s})$

 $T_{\bar{K}N-\bar{K}N} * \rho$: \bar{K} -nuclear energy dependent potential Extend to NLO

Figure 1: Calculated cross sections for $K^-p \to \pi^{\mp} \Sigma^{\pm}$ multiplied by $4|\mathbf{q}_{cm}^{K^-p}|\sqrt{s}$ and continued below the K^-p threshold (vertical line), for three chiral coupled-channel fits to the K^-p low-energy data. The fit shown by the solid (dashed) lines excludes (includes) the DEAR value for a_{K^-p} . From B. Borasoy, R. Nißler, W. Weise, EPJA 25 (2005) 79.

Extrapolation below threshold $\rightarrow \pi \Sigma$ resonance $\Lambda(1405)$ $\gamma = \frac{\Gamma(K^- p \rightarrow \pi^+ \Sigma^-)}{\Gamma(K^- p \rightarrow \pi^- \Sigma^+)} = 2.36 \pm 0.04 \implies$ isospin dependence

T. Hyodo, W. Weise, PRC 77 (2008) 035204 ($-\pi^{-}\Sigma^{+}$, ... sum of $\pi^{\pm}\Sigma^{\mp}$) A(1405) shape in $\pi - \Sigma$ spectrum, calculated in chiral models Do chiral models work well? Experimentally, need a $\pi^{0}\Sigma^{0}$ spectrum

R. Schumacher (for the CLAS Collab.) NPA 835 (2010) 231

Line shapes of $\Lambda(1405)$ predicted in a chiral model (left) and presented by CLAS in HYP-X (right)

Related, weaker statistics data from LEPS and COSY-ANKE

 $I = 0 \leftrightarrow I = 1$ interferences split $\Sigma^{\pm} \pi^{\mp}$ spectra

T. Hyodo, W. Weise, PRC 77 (2008) 035204

- I = 0 coupled-channel amplitudes
- Location of 'resonances': $\bar{K}N \approx 1420 \text{ MeV}, \pi\Sigma \approx 1405 \text{ MeV}$
- Are there two distinct ' $\Lambda(1405)$ ' resonances?

T. Hyodo, W. Weise, PRC 77 (2008) 035204

Two-pole structure in chiral coupled-channel calculations Sizable model dependence for $\pi\Sigma$ resonance pole $\bar{K}N$ QuasiBound State (QBS) at ≈ 1426 MeV Single-pole calculations: $\bar{K}N$ QBS at ≈ 1405 , bound by 27 MeV

T. Hyodo, W. Weise, PRC 77 (2008) 035204

Critique of single-pole phenomenological $\bar{K}N$ potential phen: T. Yamazaki, Y. Akaishi, PRC 76 (2007) 045201 $\bar{K}N$ QBS: at 1405 MeV (phen) or at 1420 MeV (chiral)? Different starting points in \bar{K} -nuclear cluster calculations

M. Agnello et al. (FINUDA collab.), PRL 94 (2005) 212303 Λp spectrum from K^- absorption in Li and C Evidence for a K^-pp quasibound state? no production constraint Contested by Magas, Oset, Ramos, Toki, PRC 74 (2006) 025206

V.K. Magas, presented at PANIC08

 Λp spectrum from quasi-free simulation of K^- absorption

M. Agnello et al. (FINUDA collab.), PRL 94 (2005) 212303 Λp angular correlation; supporting a K^-pp quasibound state? Sharper correlation than produced by quasi-free processes

Yamazaki et al. PRL 104 (2010) 132502, DISTO data reanalysis at 2.85 GeV Broad K^-pp structure at $\pi N\Sigma$ threshold? Forthcoming experiments: $pp \rightarrow (K^-pp) + K^+$ at GSI, $K^{-3}\text{He} \rightarrow (K^-pp) + n$ and $\pi^+d \rightarrow (K^-pp) + K^+$ at J-PARC

Exotic \overline{K} structures, with unbound nuclear cores onset of binding: K^-pp and \overline{K}^0nn , in particular $I_{NN} = 1, I_{tot} = 1/2$

	$\bar{K}N$ c	hannel	coupled channels			
(MeV)	var. [1]	var. [2]	Faddeev [3]	Faddeev [4]	Faddeev $[5]$	var. [6]
В	48	17-23	50-70	60-95	9-16, 67-89	40-80
Γ	61	40-70	90-110	45-80	34-46, 244-320	40-85

1. T. Yamazaki, Y. Akaishi, PLB **535** (2002) 70

- 2. A. Doté, T. Hyodo, W. Weise, NPA 804 (2008) 197, PRC 79 (2009) 014003
- 3. N.V. Shevchenko, A. Gal, J. Mareš, PRL 98 (2007) 082301
- 4. Y. Ikeda, T. Sato, PRC 76 (2007) 035203, PRC 79 (2009) 035201
- 5. Y. Ikeda, H. Kamano, T. Sato, arXiv:1004.4877 [nucl-th]
- 6. S. Wycech, A.M. Green, PRC **79** (2009) 014001 (including p waves)

Robust binding, but large widths and a broad range for B and Γ

Y. Ikeda, T. Sato, PRC **79** (2009) 035201

Faddeev calculations of K^-pp with $\bar{K}N - \pi Y$ input Exact: coupled $\bar{K}NN - \pi YN$. Approx: effective $\bar{K}NN$ single channel Explicit coupled channels produce 25 MeV extra binding QBS pole behaves more physically for 'Exact' than for 'Approx'

\bar{K} -nucleus potentials from K^- atoms

J. Mareš, E. Friedman, A. Gal, NPA 770 (2006) 84

 K^- -Ni best-fit (real) potentials with respect to 65 data points Lowest $\chi^2 = 84$: Fourier-Bessel (FB) model-independent analysis Density dependent models DD and F offer improvement over $t\rho$

E. Friedman (2009); see also E. Friedman, A. Gal, Phys. Rep. 452 (2007) 89 K^- atomic wavefunction R for deep DD potential penetrates, whereas for the shallower $t\rho$ it does not penetrate the nucleus

N. Barnea, E. Friedman, PRC 75 (2007) 022202 Functional Derivative analysis $[\eta = (r - R)/a]$ Deep potential (F) is determined inside the nucleus

Narrow \overline{K} nuclear quasibound states?

T. Kishimoto et al., PTP 118 (2007) 181 KEK-PS E548 missing mass spectra (left) and χ^2 contour plots (right) for (K^-, n) (upper) & (K^-, p) (lower) at $p_{\rm inc} = 1$ GeV/c on ¹²C Deep potential conclusion challenged by Magas et al. PRC 81 (2010) 024609

J. Mareš, E. Friedman, A. Gal, NPA 770 (2006) 84 B_{K^-} and Γ_{K^-} in RMF calculations: static - empty, dynamical - solid Re V_{K^-} depends on $\omega \& \sigma$ couplings; Im V_{K^-} from K^- atoms with energy dependence reflecting $\bar{K}N \to \pi Y \& \bar{K}NN \to YN$

D. Gazda, E. Friedman, A. Gal, J. Mareš, PRC 76 (2007) 055204 Γ_{K^-} as a function of B_{K^-} in RMF calculations Very large widths above $\pi\Sigma$ threshold at $B_{K^-} \approx 100$ MeV $\Gamma_{\bar{K}} > 50$ MeV for deeply bound states

 \overline{K} in multistrange matter; \overline{K} condensation?

D. Gazda, E. Friedman, A. Gal, J. Mareš, PRC 77 (2008) 045206 Saturation of $B_{\bar{K}}(\kappa)$ in multi K^- nuclei $B_{\bar{K}}(\kappa \to \infty) << (m_K + M_N - M_\Lambda) \approx 320 \text{ MeV}$ How robust is the saturation observed for $B_{\bar{K}}(\kappa)$?

D. Gazda, E. Friedman, A. Gal, J. Mareš, PRC 80 (2009) 035205 Saturation of $B_{\bar{K}}(\kappa)$ in ²⁰⁸Pb + $\eta\Lambda + \kappa K^-$ far from \bar{K} condensation

Summary

- Large widths, $\Gamma_{\overline{K}} > 50$ MeV, expected for single- \overline{K} quasibound nuclear states. Focus on light systems. Searches for K^-pp are underway in GSI and J-PARC
- \overline{K} separation energy saturates in multi- \overline{K} nuclei, and also in multi- \overline{K} hypernuclei. \overline{K} condensation is unlikely in self-bound matter on Earth
- \overline{K} condensation in neutron stars is uncertain, but the more robust hyperon degrees of freedom will surely void or delay it