

CMS Experiment at the LHC, CERN L1 BotxMinus L1 BotxPlusORMinus Data recorded: 2010-Mar-30 11:04:33.951111 GMT(13:04:33 CEST) L1 Bsc2Plus BptxPlus Run: 132440 **First results of the CMS experiment** BscMinBiasInnerThreshold2 L1 BscMinBiasOF Lumi section RntyPlusORMinu: 36208120 on QCD physics Orbit: CountsRing1 1 Crossing HLT Activity PixelCI 'Mario Galanti HLT ZeroBiasPixel SingleTrac **On behalf of the CMS Collaboration** HLT MinBiasPixel SingleTrack HLT MinBiasPixel DoubleTrack Drawing cuts & scales HLT L1 BscMinBiasOR BptxPlusORMinus MESON '10 – 11 June 2010, Kraków

(c) CERN 2009. All rights reserved physicsDeclared

Summary

Introduction: LHC and CMS

Results

- Charged multiplicity distributions
 (JHEP 02 (2010) 041 preprint: CERN-PH-EP/2010-009)
- Bose-Einstein correlations (preprint: CERN-PH-EP/2010-010)
- Two-particle correlations (preliminary results: CMS-PAS-QCD-10-002)
- Underlying event measurements (preprint: CERN-PH-EP/2010-014)

Conclusions

CMS Experiment at the LHC, CERN

a recorded: 2010-Mar-30 11:04:33.951111 GMT(13:04:33 CEST) 132440 nt: 3109359

Crossing

39 6208120

LHC and CMS

HLT Triggers:

HLT_Activity_Prot[Clusters HLT_LISingleFoxJet HLT_LISingleFoxJet_No0PTX HLT_LISingleFoxJet_No0PTX HLT_LISingleTauJet HLT_LISingleTauJet_No0PTX HLT_MinBlasBSC_No0PTX HLT_MinBlasBSC_OR HLT_MinBlasBSC_OR HLT_ZercBlasPixel_SingleTrack HLT_MinBlasPixel_SingleTrack HLT_MinBlasPixel_SingleTrack HLT_MinBlasPixel_SingleTrack HLT_MinBlasPixel_SingleTrack HLT_MinBlasPixel_SingleTrack HLT_MinBlasPixel_SingleTrack HLT_SplashBSC HLT_LI_BScMinBlasOR_BptxPlus HLT_LI_BScMinBlasOR_BptxPlus HLT_LI_BScMinBlasOR_BptxPlus HLT_LI_BScMinBlasOR_BptxPlus HLT_LI_HFtech

(c) CERN 2009. All rights reserved physicsDeclare

- 8 arcs (sectors)
- 8 long straight sections (700 m long)
- > 2 separate vacuum chambers
- Beams cross in 4 points (ATLAS, ALICE, CMS and LHCb)

Mario Galanti – University of Cyprus

LHC status and plans for 2010-11

The CMS detector

Mario Galanti – University of Cyprus

The CMS tracker

Silicon pixel detector surrounded by silicon strip detectors

- $|\eta| < 2.5$ [$\eta = -\ln(\tan(\theta/2))$]
- Pixel
 - 3 barrel layers (R=4, 7, 11 cm),
 2 endcap disks
 - ~1 m² of Si sensors, 66M channels, 1440 modules

Strips

- IO barrel layers, 9+3 endcap wheels per side
- ~198 m² of Si sensors, ~9.6M channels, 15148 modules
- From simulation studies
 - Tracking efficiency > 99% (µ), >90% (hadrons)
 - Resolution: $\Delta p/p \sim 1-2\%$ (@100 GeV, $|\eta| < 1.6$)

Physics environment	Design requirements
High particle fluence	Radiation hardness
High track density	High granularity
25 ns bunch crossing	Fast analog readout

The CMS HF calorimeter

- The Hadron Forward (HF) calorimeter covers the range
 2.9 < |η| < 5.2
- ~IIm from interaction point
- Steel Cherenkov quartz fiber
- Fast readout
- η, φ segmentation of 0.175x0.175
- Embedded Beam Scintillation Counters (BSC) used to trigger on collision events

- Total integrated luminosity (beginning of June '10)
 - 0.9 TeV $(3.9 \cdot 10^5 \text{ evts} L_{int} \sim 10 \ \mu b^{-1})$
 - 2.36 TeV $(2 \cdot 10^4 \text{ evts} L_{int} < 1 \ \mu b^{-1})$
 - > 7 TeV (L_{int} > 18 nb⁻¹) ~Growing exponentially with time!
- Analysis work ongoing: only a small fraction of the 7 TeV data has been used for the results shown in the next slides
- CMS has had a very good performance
 - >99% of detector channels operational
 - High data taking efficiency (~90%)
 - Prompt analysis chain working
 - First results shown already after ~2 days from first collisions!

Trigger and selection

- "**Minimum bias**" collision events are selected using signals from
- **BSC**
- Beam Pick-up Timing for Experiments (BPTX): two detectors at 175 m from interaction point that measure the presence of the beam
- **Requirements**:
 - Coincidence of BSC and BPTX on both sides
 - Request for a well reconstructed primary vertex
- Rejection of events induced by beam halo and beam background
- Some analyses use only Non Single-Diffractive (NSD) events
 - Selected requiring at least one tower with E > 3 GeV in each side of HF

CMS Experiment at the LHC, CERN

3109359
139
36208120

Crossing:

Charged particle multiplicities and $p_{\rm T}$ spectra

HLT Triggers:

HUT_Activity_PotelClusters____ HUT_LISingleFox241 HUT_LISingleFox241_NotBPTX HUT_LISingleTau24P HUT_LISingleTau24P HUT_MnBlasBSC HUT_MnBlasBSC_NotBPTX HUT_MnBlasBCC HUT_MnBlasBcal HUT_ZeroBlasPixel_SingleTrack HUT_MnBlasPixel_SingleTrack HUT_MnBlasPixel_SingleTrack

(c) CERN 2009. All rights reserved physicsDeck

- Three different measurement techniques applied
 - Number of clusters (hits) in the pixel detector
 - Track fragments ("tracklets") obtained correlating two hits in the pixel detector, compatible with the vertex
 - Fully reconstructed tracks

Pixel cluster counting

- Clusters belonging to tracks coming from the interaction point are selected cutting on their size along z
- Cluster length for tracks coming from primary vertex is ~[sinh(η)]
- Short clusters coming from loopers, displaced decays, secondaries are removed

Tracklets

- Track fragments (tracklets) coming from interaction point are selected exploiting the strong correlation in η between their two hits
- Combinatorial background subtracted using sideband technique
 - Signal region $|\Delta \phi| < 1$, $|\Delta \eta| < 0.1$
 - Sideband region $I < |\Delta \phi| < 2$
 - Background flat in $|\Delta \phi|$
- MC-based corrections for acceptance, weak decays, secondaries, pixel efficiency, splitting

11/06/10 / Page 15

Has the highest p_{τ} threshold

- Requires good knowledge of alignment and beam-spot

tracks in pixel and strip detectors Tracking algorithm uses several iterative

The third method uses fully reconstructed

- steps
- Background reduced by selecting tracks
 - with at least 3 hits in pixel + strips

 - compatible with primary vertex
- This method gives the cleanest results, but

Results: $dN_{ch}/d\eta$

- Left: results obtained with the three methods for NSD events
 - Compatible within the errors
- **Right**: averaged results compared with ALICE and UA5
 - > Systematic uncertainties mainly coming from trigger, event selection, reconstruction efficiencies (~5%)

Mario Galanti – University of Cyprus

Results: $p_{\rm T}$

p_{τ} distributions fitted with Tsallis function (exp + power law)

$$E\frac{d^3N_{\rm ch}}{dp^3} = \frac{1}{2\pi p_T} \frac{E}{p} \frac{d^2N_{\rm ch}}{d\eta dp_T} = C(n, T, m) \frac{dN_{\rm ch}}{dy} \left(1 + \frac{E_T}{nT}\right)^{-n}$$

Loose dependence on η , so fit in the whole range possible

Mario Galanti – University of Cyprus

Energy dependence

- Dependence ~ In²s
- Steep increase in $dN_{ch}/d\eta|_{|\eta|\approx 0}$ with energy
 - Similar to what is found by ALICE at the same energies
 - Significantly higher than most event generator predictions

CMS Experiment at the LHC, CERN

3109359
139
36208120

L1 Trigger

L1_BptXHnus L1_BptXHusORMinus L1_BptXHusORMinus L1_Bsc2Minus_BptXHinus L1_Bsc2Plus_BptXHus L1_Bsc4HighMultiplicity L1_Bsc4HighMultiplicity L1_Bsc4MinBiasInnerThreshold1 L1_Bsc4MinBiasInnerThreshold1 L1_Bsc4MinBiasOR L1_Bsc4MinBiasOR L1_Bsc4MinBiasOR L1_Bsc4MinBiasOR L1_Bsc4MinBiasOR L1_SingleFforJet2 L1_SingleFf0rJet2 L1_SingleFf0rJet2 L1_SingleFf0rJet2

Bose-Einstein correlation

HLT Triggers:

HLT_Activity_ProjClusters HLT_LISingleFoxJet HLT_LISingleFoxJet_NoBPTX HLT_LISingleTauJet_NoBPTX HLT_LISingleTauJet_NoBPTX HLT_MIRBIASBSC_NOBPTX HLT_MIRBIASBSC_OR HLT_MIRBIASBSC_OR HLT_MIRBIASBSC_OR HLT_MIRBIASBSC_OR HLT_MIRBIASBSC_OR HLT_MIRBIASPoxet_SingleTrack HLT_MIRBIASPoxet_SingleTrack HLT_MIRBIASPoxet_SingleTrack HLT_MIRBIASPoxet_SoutheTrack HLT_MIRBIASPoxet_DoubleTrack HLT_MIRBIASPoxet_DoubleTrack HLT_MIRBIASPoxet_DoubleTrack HLT_MIRBIASPoxet_SoutheTrack HLT_MIRBIASPOxet_SingleTrack HLT_LISPLANDBIASOR_BptxPlusOR HLT_LI_BSCMIRBIASOR_BptxPlusOR AICa_EcalPhISym HLT_LI_HFrech HLT_LITech_HCAL_HF_concidence

CERN 2009. All rights reserved physicsDeclared

- Probability for identical bosons produced incoherently by a source to have similar momenta is enhanced with respect to uncorrelated case (reference)
- BEC gives information on the size and shape of the primary source
- *R* is expressed as a function of the pair **Q-value**:

$$Q = \sqrt{-(p_1 - p_2)^2} = \sqrt{m_{inv}^2 - 4m_{\pi}^2}$$

We parameterize *R*(*Q*) with a Lorentz-invariant form describing the emission from **a spherical region**:

 $R(Q) = C \left[1 + \lambda \Omega(Qr)\right] \cdot (1 + \delta Q)$

- Ω is the Fourier transform of the space distribution of the emission region, whose effective size is given by r;
- λ is a **strength parameter** and
- δ allows for **long-range correlations**

BEC – Signal and reference samples

- In this study we considered **7 reference samples**, considering pairs made with:
- I. Opposite-charge tracks
- **2.** Opposite-charge tracks in which one has *p* inverted
- **3.** Same-charge tracks in which one has the *p* inverted
- **4.** Same-charge tracks in which one has p_{τ} inverted
- Same-charge tracks from different events
 - **5.** Random mixing
 - **6.** Event mixing based on similar $dN_{ch}/d\eta$ distribution
 - 7. Event mixing based on similar total invariant mass
- No golden reference. All are used and results are combined

BEC – Double ratios

- The ratio R defined above shows a clear BEC signal at low Q
 - Monte Carlo simulates no BEC
- The distribution R(Q) is distorted by resonances and long-range correlations at high Q
 - These are generally well reproduced by simulation
- We use **double ratios** to remove these and other unwanted features from the R(Q) distribution
- Cross-check: if we form pairs with pion non-pion candidates (identified with dE/dx in the tracker) the BEC effect disappears

Mario Galanti – University of Cyprus

11/06/10 / Page 22

 dN_{sig}/dQ

 $\frac{\left|\frac{dN_{ref}/dQ}{dN_{sig, MC}/dQ}\right|}{\left|\frac{dN_{sig, MC}/dQ}{dN_{ref, MC}/dQ}\right|}$

 $\Re = \frac{1}{R_{MC}}$

BEC – Results

Fits are performed with an exponential and a Gaussian form for Ω :

 $\Omega = \exp(-Qr), \Omega = \exp(-Qr)^2$

- Our data is well described by exponential fits, while the Gaussian form is very disfavored (bad fit *p*-value)
- A single value for the BEC parameters can be obtained by building a combined reference sample (*m*=7):

$$\Re_{comb} = \frac{dN_{sig}/dQ}{dN_{sig,MC}/dQ} \cdot \left(\frac{\sum_{i=1}^{m} dN_{i,MC}/dQ}{\sum_{i=1}^{m} dN_{i}/dQ}\right)$$

• Results of the fit (combined sample):

 $\lambda = 0.625 \pm 0.021$ (stat.) ± 0.046 (syst.) and $r = 1.59 \pm 0.05$ (stat.) ± 0.19 (syst.) fm at 0.9 TeV

 $\lambda = 0.663 \pm 0.073$ (stat.) ± 0.048 (syst.) and $r = 1.99 \pm 0.18$ (stat.) ± 0.24 (syst.) fm at 2.36 TeV

Main systematics source is the choice of the reference sample

BEC – Results (2)

- The parameters of BEC depend on the **total charged multiplicity** in the event
- The radius r increases significantly with N_{tracks}
-) The strenght λ slightly decreases
- This effect is present in 0.9 TeV and in 2.36 TeV data
- CMS results consistent with previous measurements

CMS results scaled ($r_{\rm G} = r/\sqrt{\pi}$)

Mario Galanti – University of Cyprus

CMS Experiment at the LHC, CERN

3109359
139
36208120

Two-particle angular correlations

HLT Triggers:

HLT_Advity_PotelClusters HLT_LISingleFoolet_No8PTX HLT_LISingleFoolet_No8PTX HLT_LISingleTaulet HLT_LISingleTaulet_No8PTX HLT_MinBla8BSC_No8PTX HLT_MinBla8BSC_OR HLT_MinBla8BSC_OR HLT_MinBla8Pixel_SingleTrack HLT_ZercBla8Pixel_SingleTrack HLT_MinBla8Pixel_SingleTrack HLT_MinBla8Pixel_SingleTrack HLT_MinBla8Pixel_SingleTrack HLT_HighMultiplicityBSC HLT_LI_BscMinBlaSOR_BptxPlusORMinus_N AICa_EcalPhiSym HLT_L1_HFtech HLT_L1Tech_HCAL_HF_coincidence_PM HLT_L1Tech_HCAL_HF_coincidence_PM

(c) CERN 2009. All rights reserved physicsDecia

Two-particle correlations

- Initial particle production modeled with "clusters"
- Each cluster is independent and decays isotropically

Data

Simulation

- > Typical observables: size (number of decay products) and width (separation in η of products)
- Two-particle angular correlations provide a way to measure the cluster properties

- S_N : **signal** (particle pairs in the same event)
- $B_{N}: reference (pairs in different events, mixed according to similar track multiplicity <math>N$)
- R(Δη, Δφ) averaged over all multiplicity bins

 $R(\Delta\eta,\Delta\phi) = \left\langle (N-1) \left(\frac{S_N(\Delta\eta,\Delta\phi)}{B_N(\Delta\eta,\Delta\phi)} - \right) \right\rangle$ 0.9 TeV (b) pp 2.36TeV 2.36 TeV 7 TeV (c) pp 7TeV (a) pp 0.9TeV $\mathbf{R}(\Delta\eta,\Delta\phi)$ $\mathbf{R}(\Delta \eta, \Delta \phi)$ **R**(Δη,Δφ) -4 -2 M (a) PYTHIA 0.9TeV (b) PYTHIA 2.36TeV (c) PYTHIA 7TeV $\mathbf{R}(\Delta\eta,\Delta\phi)$ $\mathbf{R}(\Delta\eta,\Delta\phi)$ $\mathbf{R}(\Delta\eta,\Delta\phi)$

Mario Galanti – University of Cyprus

Fit of the correlation distribution

- The 2-D structure is ~Gaussian in $\Delta\eta$ over all the $\Delta\phi$ range
 - Qualitatively consistent with an Independent Cluster Model (ICM)
- Distribution integrated over $\Delta \phi$ and fitted with the function $R(\Delta \eta)$ =

$$= \alpha \left[\frac{\Gamma(\Delta \eta)}{B(\Delta \eta)} - 1 \right]$$

- $\Gamma(\Delta \eta) \propto exp[-(\Delta \eta)^2/(4\delta^2)]$ for particles emitted by a single cluster
- $\alpha = K_{eff} I$
- For the second second fit over a large $\Delta\eta$ range

The effective cluster size K_{eff} and the decay width δ can be extracted from the fit

- Size is seen to significantly increase with energy
 - Trend already seen at lower energies
 - Increase concentrated in near-side $(0 < \Delta \phi < \pi/2)$
 - Only qualitatively reproduced by simulation
- Width is almost constant
 - Well reproduced by simulation
- Systematics mainly from event selection, tracking/acceptance, model-dependent extrapolations (~4%)

CMS Experiment at the LHC, CERN

ta recorded: 2010-Mar-30 11:04:33.951111 GMT(13:04:33 CEST) n: 132440 ent: 3109359

3620812

Underlying event

HLT Triggers:

HLT_Activity_Prod(Clusters HLT_LISingleForJet HLT_LISingleForJet_NoBPTX HLT_LISingleTauJet_NoBPTX HLT_LISingleTauJet_NoBPTX HLT_LISingleTauJet_NoBPTX HLT_MinBlasBSC_OR HLT_MinBlasBSC_OR HLT_ZeroBlasPixel_SingleTrack HLT_ZeroBlasPixel_SingleTrack HLT_MinBlasPixel_SingleTrack HLT_MinBlasPixel_SingleTrack HLT_MinBlasPixel_DoubleTrack HLT_SplashBSC HLT_LI_BscMinBlasOR_BpxPlusOf HLT_LI_BscMinBlasOR_BpxPlusOf AlCa_EcalPhiSym HLT_LI_HFlech HLT_LITech_HCAL_HF_coincidence

(c) CERN 2009. All rights reserved physicsDecia

Underlying event

- In a typical event at a hadron collider, the "hard" parton scattering is accompanied by other processes
 - Additional "soft" interactions among beam partons (Multiple Parton Interactions, MPI)
 - Hadronization of non-interacting beam partons (Beam-Beam Remnants, BBR)
- Products of MPI and BBR form the Underlying event (UE)
- UE knowledge is crucial for MC tuning, precision SM measurements, searches for physics beyond the SM

- In the toward and away regions, high activity due to radiation and to the fragmentation of the two outgoing partons
 - It increases with leading track $p_{\rm T}$
- Non-null activity in transverse region is attributed to UE
- No PYTHIA tune models accurately data

Particle production in the transverse region

- Activity of the UE (multiplicity and average momentum) increases with leading jet / leading track p_{τ}
 - Slower increase for jet $p_T > 4$ GeV (track $p_T > 3$ GeV)
 - Behavior well-reproduced by simulation (CW and DW tunes "bracket" the data)
- Bands are statistical+systematic errors (material budget, background contamination, selection)

- Monte Carlo simulation does not represent well the data
- Plots show data/MC ratios
 - Data are above MC for most tunes (except CW)
 - Data trends (expecially for N_{ch}) are not well simulated
- These measurements allow for a better MC tuning (ongoing effort)

Conclusions

- LHC has started providing very high quality data to the experiments
- CMS has had an impressive performance during these months of data taking
- Early measurements on soft hadron physics give the first insight on the new energy domain
- Particle correlations and distributions are interesting results per se
 - They unveil shortcomings of available MC models
 - Useful references for the upcoming heavy-ion runs
- Other analyses are being prepared as the total collected data increase
- Many more results coming soon!