Diffractive and Coulomb Dissociation of pions into three charged pions at low momentum transfer at COMPASS

#### Stefanie Grabmüller for the COMPASS collaboration

Physik Department E18 Technische Universität München

11<sup>th</sup> International Workshop on Meson Production, Properties and Interaction KRAKÓW, POLAND 10 - 15 June 2010

supported by: Maier-Leibnitz-Labor der TU und LMU München,

Excellenzcluster: Origin and Structure of the Universe, BMBF







Meson Spectroscopy at COMPASS (2004)

Extraction of Primakoff Signal

Partial Wave Analysis Results

Summary and Outlook



### Meson Spectroscopy at Low Momentum Transfer

# Technische Universität Münche

#### Motivation for Analysis

Meson spectrum at low momentum transfer

- Two production mechanisms
- a2(1320) resonance in detail:
  - in photon-pion process  $\rightarrow \Gamma(a_2(1320) \rightarrow \pi \gamma)$
  - in diffractive (pomeron) production
  - interference effect
- More radiative couplings (heavier mesons?)
- Test of ChPT at low masses (chiral diagrams)



chiral contribution to  $3\pi$  production in  $\pi\gamma$  scattering



### Meson Spectroscopy at Low Momentum Transfer

#### Motivation for Analysis

Meson spectrum at low momentum transfer

- Two production mechanisms
- a2(1320) resonance in detail:
  - in photon-pion process  $\rightarrow \Gamma(a_2(1320) \rightarrow \pi \gamma)$
  - in diffractive (pomeron) production
  - interference effect
- More radiative couplings (heavier mesons?)
- Test of ChPT at low masses (chiral diagrams)



Technische Universität Mür

chiral contribution to  $3\pi$  production in  $\pi\gamma$  scattering

#### Challenges and Opportunities in the light (u,d) Quark Sector

- High density of states; broad, overlapping states
- Exploit interference effects → phase motion
- Requires high statistics, complete PS coverage

 $\rightarrow$  COMPASS can contribute significantly in the low mass region



#### COMPASS 2004 Pilot Hadron Run



Experimental Setup





## COMPASS 2004 Pilot Hadron Run



Experimental Setup



Stefanie Grabmüller (TUM E18) — Diffractive and Coulomb Dissociation of pions into 3 charged pions at low t' at COMPASS

# Diffractive and Coulomb Production of Mesons

- Diffraction: target particle remains intact
   → low momentum transfer
   / = 0 Reggeon t-channel exchange
- Primakoff: photon exchange contribution at smallest momentum transfer
- Dissociation: beam pion is excited to a resonance X<sup>-</sup>, which subsequently decays  $\Rightarrow$  e.g.  $\pi^-Pb \rightarrow X^-Pb \rightarrow \pi^-\pi^-\pi^+Pb$









## Diffractive and Coulomb Production of Mesons

- Diffraction: target particle remains intact  $\rightarrow$  low momentum transfer
  - I = 0 Reggeon t-channel exchange
- Primakoff: photon exchange contribution at smallest momentum transfer
- Dissociation: beam pion is excited to a resonance  $X^{-}$ , which subsequently decays  $\Rightarrow$  e.g.  $\pi^-$ Pb  $\rightarrow X^-$ Pb  $\rightarrow \pi^-\pi^-\pi^+$ Pb

- Exclusive  $3\pi$  final state events
- COMPASS 2004 (few days of data taking):
  - $\sim 4\,000\,000\,3\pi$  events



190 195

Technische Universität Münch

185 Calculated Beam Energy (GeV)

180



Number of Event

165 170



Momentum Transfer







Momentum Transfer

 $10^{3}$ 

 $10^{2}$ 

Technische Universität München



Diffraction pattern: Pb nucleus acts like "black disc" in optics

• "Low t'":  $10^{-3} (\text{GeV}/c)^2 < t' < 10^{-2} (\text{GeV}/c)^2 \sim 2\,000\,000$  events • "Primakoff region":  $t' < 10^{-3} (\text{GeV}/c)^2 \sim 1\,000\,000$  events

Momentum Transfer t' (GeV<sup>2</sup>/c<sup>2</sup>)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0

# Primakoff contribution at $t' < 10^{-3} \, (\text{GeV}/c)^2$

Technische Universität München

 $\begin{array}{ll} \mbox{Primakoff:} & \sigma(t') \propto e^{-b_{\rm Prim}t'}, & b_{\rm Prim} \approx 2000 \, ({\rm GeV}/c)^{-2} \mbox{ (mainly resolution)} \\ \mbox{Diffractive:} & \sigma(t') \propto e^{-b_{\rm diff}t'}, & b_{\rm diff} \approx 400 \, ({\rm GeV}/c)^{-2} \mbox{ for lead target} \end{array}$ 



(Mass) spectrum of this Primakoff contribution?  $\Rightarrow$  Statistical subtraction of diffractive background (for bins of  $m_{3\pi}$ )

Stefanie Grabmüller (TUM E18) — Diffractive and Coulomb Dissociation of pions into 3 charged pions at low t' at COMPASS



• Fit of t' spectrum with sum of both exponentials for  $0 < t' < 0.006 (\text{GeV}/c)^2$ 



8/19



 $(0.5 < m_{3\pi} < 2.5 \,\mathrm{GeV}/c^2)$ 



- Statistical subtraction separately in  $40 \text{ MeV}/c^2$  mass bins
- Integrate Primakoff contribution of the t' spectra for  $t' < 10^{-3} \, (\text{GeV}/c)^2$





- Statistical subtraction separately in  $40 \text{ MeV}/c^2$  mass bins
- Integrate Primakoff contribution of the t' spectra for  $t' < 10^{-3} \, (\text{GeV}/c)^2$



Fig. 3.  $M_{3\pi}$  mass distribution for the Cu target after subtraction of diffractive background. The curve shows fit with a sum of pure Coulomb contribution and smooth background.



#### Partial Wave Analysis Formalism





 $\pi^{-}(beam)$  $\pi^{-}(\text{bachelor})$  $\varepsilon = +$  natural  $R_{\pi\pi}$ parity exchange 2  $\varepsilon = -$ : unnatural parity exchange recoil target

- Isobar model: Intermediate 2-particle decays
- Partial wave in reflectivity basis: J<sup>PC</sup>M<sup>e</sup>[isobar]L

- Mass-independent PWA (40 MeV/c<sup>2</sup> mass bins): 38 waves Fit of angular dependence of partial waves, interferences
- Mass-dependent  $\chi^2$ -fit



Technische Universität Müncher

Intensity of selected waves:  $0^{-+}0^{+}f_{0}(980)\pi S$ ,  $1^{++}0^{+}\rho\pi S$ ,  $2^{++}1^{+}\rho\pi D$ ,  $2^{-+}0^{+}f_{2}(1270)\pi S$ 



Stefanie Grabmüller (TUM E18) — Diffractive and Coulomb Dissociation of pions into 3 charged pions at low t' at COMPASS

# Spin Totals for $t' < 10^{-3} \, (\text{GeV}/c)^2$



"Spin Totals": Sum of all contributions for given M (i.e. z-projection of J)

*t'*-dependent amplitudes: Primakoff production:

$$\begin{split} & \mathsf{M}{=}1\colon \sigma(t') \propto \mathrm{e}^{-b_{\mathrm{Prim}}t'} \to \mathrm{arises} \text{ at } t' \approx 0 \text{ (resoluted shape!)} \\ & \mathsf{M}{=}0\colon \sigma(t') \propto \mathrm{e}^{-b_{\mathrm{diff}}(m)t'} \\ & \mathsf{M}{=}1\colon \sigma(t') \propto t' \mathrm{e}^{-b_{\mathrm{diff}}(m)t'} \to \mathrm{vanishes for } t' \approx 0 \end{split}$$





#### Production Phase $a_2 - a_1$ for separated t' regions



### Phase $a_2 - a_1$ in detail: t' dependence





# Theory: Phase a<sub>2</sub>(strong+Coulomb)-a<sub>1</sub>(strong)



#### Glauber modell

G. Fäldt and U. Tengblad, Phys. Rev. C79, 014607 (2009) Plot: N. Kaiser (TU München)

- ⇒ indicates confirmation of interference Coulumb-interaction strong interaction
- $\Rightarrow$  detailed studies of the nature of resonances





- COMPASS 2004 hadron run (few days) using a 190 GeV  $\pi^-$  beam
- $\pi^- Pb \rightarrow \pi^- \pi^- \pi^+ Pb$  at (very) low momentum transfer
- Extraction of photo-produced contribution
- PWA in mass bins and t' bins
- Production phase of *a*<sub>2</sub>(1320) dependent on *t*' shows interference of contributions from Coulomb and strong interaction

Further Analysis of  $3\pi$  data at low momentum transfer:

- Mass-dependent PWA: Proper incorporation of Deck effect, Test of chiral diagrams in threshold mass region
- Comparison with hydrogen, lead and nickel data (2009, extended spectrometer)





 $\pi^{-}\pi^{-}\pi^{+}$  mass distribution



# BACKUP: Partial Wave Analysis Formalism



Mass-independent PWA (narrow mass bins):

 $\sigma_{\mathrm{indep}}(\tau, \boldsymbol{m}, t') = \sum_{\epsilon \to -1} \sum_{r=1}^{N_r} \left| \sum_i T_{ir}^{\epsilon} f_i^{\epsilon}(t') \psi_i^{\epsilon}(\tau, \boldsymbol{m}) / \sqrt{\int |f_i^{\epsilon}(t')|^2 \mathrm{d}t'} \sqrt{\int |\psi_i^{\epsilon}(\tau', \boldsymbol{m})|^2 \mathrm{d}\tau'} \right|^2$ 

- Production strenght assumed constant in single bins
- Decay amplitudes ψ<sup>ε</sup><sub>i</sub>(τ, m), with t' dependence f<sup>ε</sup><sub>i</sub>(t')
   Production amplitudes T<sup>ε</sup><sub>jr</sub> → Extended log-likelihood fit
   Acceptance corrections included
- Spin-density matrix:  $\rho_{ij}^{\epsilon} = \sum_{r} T_{ir}^{\epsilon} T_{jr}^{\epsilon*}$ 
  - → Physical parameters:

$$\begin{split} & \text{Intens}_{i}^{\epsilon} = \rho_{ij}^{\epsilon}, \\ & \text{relative phase } \Phi_{ij}^{e} \\ & \text{Coh }_{i,j}^{\epsilon} = \sqrt{(\text{ Re } \rho_{ij}^{\epsilon})^{2} + (\text{ Im } \rho_{ij}^{\epsilon})^{2}} \Big/ \sqrt{\rho_{ii}^{\epsilon} \rho_{ij}^{\epsilon}} \end{split}$$

- Mass-dependent  $\chi^2$ -fit (not presented here):
  - X parameterized by Breit-Wigner (BW) functions
  - Background can be added

# **BACKUP:** Mesons and Spin-Exotic States





#### **Constituent Quark Model**

- Color-neutral qq systems
- Quantum numbers I<sup>G</sup>J<sup>PC</sup>

• 
$$P = (-1)^{L+1}$$
  $C = (-1)^{L+S}$   $G = (-1)^{l+L+S}$ 

- $J^{PC}$  Multiplets:  $0^{++}, 0^{-+}, 1^{--}, 1^{+-}, 1^{++}, 2^{++}, \dots$
- Forbidden: 0<sup>+-</sup>, 1<sup>-+</sup>, 2<sup>+-</sup>, 3<sup>-+</sup>, ...

### QCD: Additional color-neutral objects

- Tetraquarks  $(q\overline{q})(q\overline{q})$
- Hybrids  $(q\overline{q})g$   $(\pi_1(1400), \pi_1(1600))$
- Glueballs gg  $(f_0(1500))$

### Spin Exotic States

- $J^{PC}$  forbidden  $\Rightarrow$  cannot be a  $q\overline{q}$  state
- No mixing with quark model states

#### ⇒ COMPASS