	ntrod	
C		

Results

Summary and outlook

Production of D and B mesons and their semileptonic decays

Rafał Maciuła

Institute of Nuclear Physics (PAN), Cracow, Poland

in collaboration with A. Szczurek and G. Ślipek

11th International Workshop on Meson Production, Properties and Interaction,

45

Cracow, Poland, 2010

Introduction	Open Charm and Bottom and nonphotonic electrons	Related processes	Results	Summary and outlook

Plan of the talk

Introduction

Open Charm and Bottom and nonphotonic electrons

- Heavy quarks pair production
- Fragmentation into heavy mesons
- Semileptonic decays of D and B mesons

3 Related processes

- Drell-Yan dileptons
- QED $\gamma\gamma \rightarrow e^+e^-$ in p+p scattering

Summary and outlook

Introduction	Open Charm and Bottom and nonphotonic electrons	Related processes	Results	Summary and outlook
•	0000	00	000000	
		•		

Inclusive measurements of e^+e^- pairs

• e^+e^- pair invariant mass spectrum (0 - 8 GeV) PHENIX, p+p @ $\sqrt{s} = 200$ GeV, A. Adare, et al., Phys. Lett. **B 670** (2009), 313-320

 dielectron mass spectrum dominated by semileptonic decays of charm and bottom mesons → nonphotonic electrons

Introduction	Open Charm and Bottom and nonphotonic electrons	Related processes	Results	Summary and outlook
•	0000	00	000000	
	+ -			

Inclusive measurements of e^+e^- pairs

• e^+e^- pair invariant mass spectrum (0 - 8 GeV) PHENIX, p+p @ $\sqrt{s} = 200$ GeV, A. Adare, et al., Phys. Lett. **B 670** (2009), 313-320

- dielectron mass spectrum dominated by semileptonic decays of charm and bottom mesons → nonphotonic electrons
- charm and bottom production → standard measurements of single leptons (PHENIX. STAR) and pQCD calculations (NLO, FONLL)

Introd •	luction		Open Charm and Bottom and 0000	nonphotonic e	lectrons	Related processes	i Re O	esults 00000	Summary and outle	
		-			<u> </u>					

Inclusive measurements of e^+e^- pairs

• e^+e^- pair invariant mass spectrum (0 - 8 GeV) PHENIX, p+p @ $\sqrt{s} = 200$ GeV, A. Adare, et al., Phys. Lett. **B 670** (2009), 313-320

- dielectron mass spectrum dominated by semileptonic decays of charm and bottom mesons → nonphotonic electrons
- charm and bottom production → standard measurements of single leptons (PHENIX. STAR) and pQCD calculations (NLO, FONLL)
- alternative method → dielectron correlations
- a new tool for testing pQCD techniques, fragmentation functions and semileptonic decays of D and B mesons

イロト イポト イヨト イヨト

Open Charm and Bottom and nonphotonic electrons	Related processes	Results	Summary and outlook

Nonphotonic electrons predictions

Introduction	Open Charm and Bottom and nonphotonic electrons	Related processes	Results	Summary and outlook

Nonphotonic electrons predictions

0 0000 00 00 0000 0000	Results Summary and outlook	Results	Related processes	Open Charm and Bottom and nonphotonic electrons	Introduction

Nonphotonic electrons predictions

Introduction O	Open Charm and Bottom and nonphotonic electrons	Related processes	Results 000000	Summary and outlook	
Nonphotonic electrons predictions					

Semileptonic decays of D and B mesons

Introduction O	Open Charm and Bottom and nonphotonic electrons	Related processes 00	Results 000000	Summary and outlook
кі і				
Nonpho	ptonic electrons prediction	S		
	$\begin{array}{c} QCD\\ pp & \xrightarrow{pQCD} Quarks \stackrel{fragmentation}{\longrightarrow} Had\\ \end{array}$ Heavy quarks $Q\bar{Q}$ pairs production	lrons decyas el	ectrons t xperimental bservable	
	• $m_c = 1.5 { m GeV}, m_b = 4.75 { m GeV}$	\longrightarrow perturbative	e QCD	
2	Heavy quarks hadronization (fragmen	tation)		
3	Semileptonic decays of D and B mesc	ns		
	$rac{d\sigma^{ extsf{e}}}{dyd^2p} = rac{d\sigma^{ extsf{e}}}{dyd^2p}\otimes D_{ extsf{e}}$	$_{Q ightarrow H}\otimes f_{H ightarrow e}$) ν	
	X D^{0} D^{++}	α α α D ⁺ D ⁺ D ⁺ D ⁺	X e ⁺	(E) E OQC

Intro	bd	tio	

Heavy quarks pair production

Dominant mechanism and the k_t -factorization approach

- charm and bottom quarks production at high energies
 → gluon-gluon fusion
- QCD collinear approach → only inclusive one particle distributions, total cross sections
- LO k_t -factorization approach $\longrightarrow \kappa_{1,t}, \kappa_{2,t} \neq 0$ $\Rightarrow Q\bar{Q}$ correlations, p_t -distributions (Łuszczak, Szczurek)

Intro	duc	tion

Results Summa

Summary and outlook

Heavy quarks pair production

Dominant mechanism and the k_t -factorization approach

- charm and bottom quarks production at high energies
 → gluon-gluon fusion
- QCD collinear approach → only inclusive one particle distributions, total cross sections
- LO k_t -factorization approach $\longrightarrow \kappa_{1,t}, \kappa_{2,t} \neq 0$ $\Rightarrow Q\bar{Q}$ correlations, p_t -distributions (Łuszczak, Szczurek)

• multi-differential cross section $\frac{d\sigma}{dy_1 dp_{1t} dy_2 dp_{2t} d\phi} = \sum_{l,j} \int \frac{d^2 \kappa_{1,t}}{\pi} \frac{d^2 \kappa_{2,t}}{\pi} \frac{1}{16\pi^2 (x_1 x_2 s)^2} \overline{|\mathcal{M}_{lj \to \Theta \overline{\Theta}}|^2}$ $\times \delta^2 \left(\vec{\kappa}_{1,t} + \vec{\kappa}_{2,t} - \vec{p}_{1,t} - \vec{p}_{2,t} \right) \mathcal{F}_l(x_1, \kappa_{1,t}^2) \mathcal{F}_j(x_2, \kappa_{2,t}^2)$

Intro	duc	tion

Heavy quarks pair production

Dominant mechanism and the k_t -factorization approach

- charm and bottom quarks production at high energies
 → gluon-gluon fusion
- QCD collinear approach → only inclusive one particle distributions, total cross sections
- LO k_t -factorization approach $\longrightarrow \kappa_{1,t}, \kappa_{2,t} \neq 0$ $\Rightarrow Q\bar{Q}$ correlations, p_t -distributions (Łuszczak, Szczurek)

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

• multi-differential cross section $\frac{d\sigma}{dy_1 dp_{1t} dy_2 dp_{2t} d\phi} = \sum_{i,j} \int \frac{d^2 \kappa_{1,t}}{\pi} \frac{d^2 \kappa_{2,t}}{\pi} \frac{1}{16\pi^2 (x_1 x_2 s)^2} \overline{|\mathcal{M}_{ij \to Q\bar{Q}}|^2}$ $\times \delta^2 \left(\vec{\kappa}_{1,t} + \vec{\kappa}_{2,t} - \vec{p}_{1,t} - \vec{p}_{2,t}\right) \mathcal{F}_i(x_1, \kappa_{1,t}^2) \mathcal{F}_j(x_2, \kappa_{2,t}^2)$

• off-shell $\overline{|\mathcal{M}_{gg \to Q\bar{\mathbb{Q}}}|^2} \longrightarrow$ Catani, Ciafaloni, Hautmann (very long formula)

major part of NLO corrections automatically included

Intro	duc	tion

Results Summary and outlook

Heavy quarks pair production

Dominant mechanism and the k_t -factorization approach

- charm and bottom quarks production at high energies
 → gluon-gluon fusion
- QCD collinear approach → only inclusive one particle distributions, total cross sections
- LO k_t -factorization approach $\longrightarrow \kappa_{1,t}, \kappa_{2,t} \neq 0$ $\Rightarrow Q\bar{Q}$ correlations, p_t -distributions (Łuszczak, Szczurek)

• multi-differential cross section $\frac{d\sigma}{dy_1 dp_{1t} dy_2 dp_{2t} d\phi} = \sum_{l,j} \int \frac{d^2 \kappa_{1,t}}{\pi} \frac{d^2 \kappa_{2,t}}{\pi} \frac{1}{16\pi^2 (x_1 x_2 s)^2} \overline{|\mathcal{M}_{lj \to Q\overline{Q}}|^2}$ $\times \delta^2 \left(\vec{\kappa}_{1,t} + \vec{\kappa}_{2,t} - \vec{p}_{1,t} - \vec{p}_{2,t}\right) \mathcal{F}_i(x_1, \kappa_{1,t}^2) \mathcal{F}_j(x_2, \kappa_{2,t}^2)$

- off-shell $\overline{|\mathcal{M}_{gg \to Q\bar{Q}}|^2} \longrightarrow$ Catani, Ciafaloni, Hautmann (very long formula)
- major part of NLO corrections automatically included
- $\mathcal{F}_{i}(x_{1}, \kappa_{1,t}^{2}) \mathcal{F}_{j}(x_{2}, \kappa_{2,t}^{2})$ unintegrated parton distributions

•
$$x_1 = \frac{m_{1,t}}{\sqrt{s}} \exp(y_1) + \frac{m_{2,t}}{\sqrt{s}} \exp(y_2),$$

 $x_2 = \frac{m_{1,t}}{\sqrt{s}} \exp(-y_1) + \frac{m_{2,t}}{\sqrt{s}} \exp(-y_2),$ where $m_{l,t} = \sqrt{p_{l,t}^2 + m_Q^2}.$

Open Charm and Bottom and nonphotonic electrons	Related processes	Results	Summary and out
0000			

Heavy quarks pair production

UPDFs - unintegrated parton distribution functions

- k_t -factorization \rightarrow replacement: $p_k(x, \mu_F^2) \longrightarrow \mathcal{F}_k(x, \kappa_t^2, \mu_F^2)$
- UPDFs needed in less inclusive measurements which are sensitive to the transverse momentum of the parton
- several models: BFKL, GBW, Ivanov-Nikolaev, Kharzeev-Levin, KMR, Kutak-Stasto, Kwiecinski
- Kwiecinski UPDFs:

from CCFM evolution equations

$$\begin{aligned} \mathcal{F}_{k}(x,\kappa_{t}^{2},\mu_{F}^{2}) &= \int_{0}^{\infty} db \ bJ_{0}(\kappa_{t}b)\tilde{\mathcal{F}}_{k}(x,b,\mu_{F}^{2}) \\ \tilde{\mathcal{F}}_{k}(x,b,\mu_{F}^{2}) &= \int_{0}^{\infty} d\kappa_{t} \ \kappa_{t}J_{0}(\kappa_{t}b)\mathcal{F}_{k}(x,\kappa_{t}^{2},\mu_{F}^{2}) \end{aligned}$$

● PDFs → UPDFs

$$xp_k(x,\mu_F^2) = \int_0^\infty d\kappa_t^2 \mathcal{F}(x,\kappa_t^2,\mu_F^2)$$

Introduction O	pen Charm and Bottom and nonphotonic electrons	Related processes	Results	Summary and outlook		
	000					
Fragmentation into heavy mesons						

Simulation of hadronization process

- phenomenology \rightarrow fragmentation functions extracted from e^+e^- data
- often used: Braaten et al., Kartvelishvili et al., Peterson et al.
- Peterson et al. $D_{Q \to M}(z) = \frac{N}{z[1-(1/z)-\varepsilon_Q/(1-z)]}$ $\varepsilon_c = 0.06, \varepsilon_b = 0.006$ from PDG
- numerically performed by rescalling transverse momentum at a constant rapidity (angle)

Introduction	Open Charm and Bottom and nonphotonic electrons	Related processes	Results	Summary and outlook		
	0000					
Fragmentation into heavy mesons						

Simulation of hadronization process

- phenomenology \rightarrow fragmentation functions extracted from e^+e^- data
- often used: Braaten et al., Kartvelishvili et al., Peterson et al.
- Peterson et al. $D_{Q \to M}(z) = \frac{N}{z[1-(1/z)-\varepsilon_Q/(1-z)]}$ $\varepsilon_c = 0.06, \varepsilon_b = 0.006$ from PDG
- numerically performed by rescalling transverse momentum at a constant rapidity (angle)
- from heavy quarks to heavy mesons:

$$\frac{d\sigma(y_1, p_{1t}^M, y_2, p_{2t}^M, \phi)}{dy_1 dp_{1t}^M dy_2 dp_{2t}^M d\phi} \approx \int \frac{D_{Q \to M}(z_1)}{z_1} \cdot \frac{D_{\bar{Q} \to \bar{M}}(z_2)}{z_2} \cdot \frac{d\sigma(y_1, p_{1t}^Q, y_2, p_{2t}^Q, \phi)}{dy_1 dp_{1t}^Q dy_2 dp_{2t}^Q d\phi} dz_1 dz_2$$

where:
$$p_{1t}^{Q} = \frac{p_{1t}^{M}}{z_{1}}$$
, $p_{2t}^{Q} = \frac{p_{2t}^{M}}{z_{2}}$ and $z_{1}, z_{2} \in (0, 1)$

• approximation:

 y_1, y_2, ϕ - unchanged in the fragmentation process

Introduction	Open Charm and Bottom and nonphotonic electrons	Related processes	Results	Summary and outlook		
	0000					
Semileptonic decays of D and B mesons						

Simple model of semileptonic decays

- CLEO $e^+e^- \rightarrow \Psi(3770) \rightarrow D\bar{D} \rightarrow Xev$ $BR(D^+ \rightarrow e^+v_eX)=16.13\pm0.20(stat.)\pm0.33(syst.)\%$ $BR(D^0 \rightarrow e^+v_eX)=6.46\pm0.17(stat.)\pm0.13(syst.)\%$
- **BABAR** $e^+e^- \rightarrow \Upsilon(10600) \rightarrow B\overline{B} \rightarrow Xev$ BR $(B \rightarrow ev_eX)=10.36\pm0.06(stat.)\pm0.23(syst.)\%$

Introduction	Open Charm and Bottom and nonphotonic electrons	Related processes	Results	Summary and outlook		
	0000					
Semileptonic decays of D and B mesons						

Simple model of semileptonic decays

- CLEO $e^+e^- \rightarrow \Psi(3770) \rightarrow D\bar{D} \rightarrow Xev$ $BR(D^+ \rightarrow e^+v_eX)=16.13\pm0.20(stat.)\pm0.33(syst.)\%$ $BR(D^0 \rightarrow e^+v_eX)=6.46\pm0.17(stat.)\pm0.13(syst.)\%$
- **BABAR** $e^+e^- \rightarrow \Upsilon(10600) \rightarrow B\overline{B} \rightarrow Xev$ BR $(B \rightarrow ev_eX)=10.36\pm0.06(stat.)\pm0.23(syst.)\%$
- Monte Carlo ⇒ directions and lengths of outgoing leptons momenta
- Our input \implies experimental decay functions: $f_{CLEO}(p), f_{BABAR}(p)$

Introduction	Open Charm and Bottom and nonphotonic electrons	Related processes	Results	Summary and outlook		
	0000					
Semileptonic decays of D and B mesons						

Simple model of semileptonic decays

- CLEO $e^+e^- \rightarrow \Psi(3770) \rightarrow D\bar{D} \rightarrow Xev$ $BR(D^+ \rightarrow e^+v_eX)=16.13\pm0.20(stat.)\pm0.33(syst.)\%$ $BR(D^0 \rightarrow e^+v_eX)=6.46\pm0.17(stat.)\pm0.13(syst.)\%$
- **BABAR** $e^+e^- \rightarrow \Upsilon(10600) \rightarrow B\overline{B} \rightarrow Xev$ BR $(B \rightarrow ev_e X)=10.36\pm 0.06(stat.)\pm 0.23(syst.)\%$
- Monte Carlo =>> directions and lengths of outgoing leptons momenta
- Our input \implies experimental decay functions: $f_{CLEO}(p)$, $f_{BABAR}(p)$

• approximation: $D \text{ mesons } (D^{\pm}, D^{0}, \overline{D^{0}}, D_{S}^{\pm}, D^{*0}, D^{*\pm}, D_{S}^{*\pm})$ $B \text{ mesons } (B^{\pm}, B^{0}, \overline{D^{0}}, B_{S}^{0}, \overline{B_{S}^{0}}, B^{*}, B_{S}^{*})$ $BR(D \text{ and } B \longrightarrow X e v \approx 10\%)$

(日)

Introduction	Open Charm and Bottom and nonphotonic electrons	Related processes	Results	Summary and outlook		
	0000	•0	000000	0000		
Drell-Yan dileptons						

Drell-Yan processes in the k_t -factorization

- A. Szczurek, G. Ślipek, Phys. Rev. D 78 (2008) 114007
- k_t -factorization approach with Kwiecinski UPDFs

• • • • • • • • • • • •

- 0-th and 1-st order qq
 -anihilation and 1-st order Compton scattering
- O-th order Drell-Yan cross section

$$\begin{aligned} \frac{d\sigma}{dy_1 dy_2 d^2 p_{1t} d^2 p_{2t}} &= \sum_t \int \frac{d^2 \kappa_{1t}}{\pi} \frac{d^2 \kappa_{2t}}{\pi} \frac{1}{16\pi^2 (x_1 x_2 s)^2} \ \delta^2 \left(\vec{\kappa}_{1t} + \vec{\kappa}_{2t} - \vec{p}_{1t} - \vec{p}_{2t}\right) \\ & \left[\mathcal{F}_{q_t} (x_1, \kappa_{1t}^2, \mu_F^2) \ \mathcal{F}_{\bar{q}_t} (x_2, \kappa_{2t}^2, \mu_F^2) \ \overline{|M(q\bar{q} \to e^+e^-)|^2} \right. \\ & \left. + \mathcal{F}_{\bar{q}_t} (x_1, \kappa_{1t}^2, \mu_F^2) \ \mathcal{F}_{q_t} (x_2, \kappa_{2t}^2, \mu_F^2) \ \overline{|M(q\bar{q} \to e^+e^-)|^2} \right] \end{aligned}$$

unintegrated quark distributions

Introduction	Open Charm and Bottom and nonphotonic electrons	Related processes	Results	Summary and outlook		
		0•				
QED $\gamma\gamma \rightarrow e^+e^-$ in p+p scattering						

Elastic and inelastic reactions

•
$$pp \rightarrow ppe^+e^-$$

- exact momentum space calculations with 4-body phase space
- consistent with LPAIR Monte Carlo package

• $pp \rightarrow X_1 X_2 e^+ e^-$

- collinear kinematics
- MRST 2004

(Martin-Roberts-Stirling-Thorne) photon distributions in nucleon

Introduction O	Open Charm and Bottom and nonphotonic electrons	Related processes	Results •00000	Summary and outlook

Dilepton invariant mass spectrum

Э

Image: A math a math

Introduction	Open Charm and Bottom and nonphotonic electrons	Related processes	Results	Summary and outlook
			000000	

Uncertainties - μ_F , μ_R scale dependence

в

Image: A math a math

Introduction	Open Charm and Bottom and nonphotonic electrons	Related processes	Results	Summary and outlook
			000000	

Uncertainties - quark mass dependence

Image: A matrix and a matrix

Introduction	Open Charm and Bottom and nonphotonic electrons	Related processes	Results	Summary and outlook
			000000	

Sensitivity of fragmentation functions parameters ϵ_c , ϵ_b

• • • • • • • • •

Open Charm and Bottom and nonphotonic electrons	Related processes	Results	Summary and outlook
		000000	

Transverse momenta correlations

Introduction	Open Charm and Bottom and nonphotonic electrons	Related processes	Results	Summary and outlook
			000000	

Azimuthal and $p_{t,sum}$ correlations

 azimuthal angle between outgoing leptons • $\overrightarrow{p_{t,sum}} = \overrightarrow{p_{1t}} + \overrightarrow{p_{2t}}$

Introduction	Open Charm and Bottom and nonphotonic electrons	Related processes	Results	Summary and outlook
O	0000		000000	●000
Summo	ary			

Introduction O	Open Charm and Bottom and nonphotonic electrons 0000	Related processes	Results 000000	Summary and outlook ●000
Summar	y			

Model:

 Theoretical description of nonphotonic and Drell-Yan dilepton production in proton-proton collisions in the framework of the k_t-factorization approach

Introduction O	Open Charm and Bottom and nonphotonic electrons	Related processes 00	Results 000000	Summary and outlook ●000	
Summo	arv				

Model:

• Theoretical description of nonphotonic and Drell-Yan dilepton production in proton-proton collisions in the framework of the *k*_t-factorization approach

Succes:

• Well description of the PHENIX dilepton invariant mass spectrum

ntroduction D	Open Charm and Bottom and nonphotonic electrons	Related processes	Results 000000	Summary and outlook ●000
Summar	V			

Model:

• Theoretical description of nonphotonic and Drell-Yan dilepton production in proton-proton collisions in the framework of the *k*_t-factorization approach

Succes:

• Well description of the PHENIX dilepton invariant mass spectrum

New possibilieties:

• Kinematical correlations between outgoing leptons

Introduction	Open Charm and Bottom and nonphotonic electrons	Related processes	Results	Summary and outlook
				0000

Thank You for attention!

Introduction	Open Charm and Bottom and nonphotonic electrons	Related processes	Results	Summary and outlook
				0000

Backup

Э

Image: A math a math

Introduction	Open Charm and Bottom and nonphotonic electrons	Related processes	Results	Summary and outlook
				0000

Backup

$$\begin{array}{c} c \xrightarrow{0.246} D^+ \xrightarrow{0.161} e^+ \\ \xrightarrow{0.565} D^0 \xrightarrow{0.066} e^+ \\ \xrightarrow{0.224} D^{*+} \xrightarrow{0.677} \pi^+ D^0 \xrightarrow{0.066} e^+ \\ \xrightarrow{0.307} \pi^0 D^+ \xrightarrow{0.161} e^+ \\ \xrightarrow{0.016} \gamma D^+ \xrightarrow{0.161} e^+ \\ \xrightarrow{0.213} D^{*0} \xrightarrow{0.619} \pi^0 D^0 \xrightarrow{0.066} e^+ \\ \xrightarrow{0.381} \gamma D^0 \xrightarrow{0.066} e^+ \\ \xrightarrow{0.381} \gamma D^0 \xrightarrow{0.066} e^+ \\ \xrightarrow{0.061} D_S^+ \xrightarrow{0.942} \gamma D_S^+ \xrightarrow{0.08} e^+ \\ \xrightarrow{0.058} \pi^0 D_S^+ \xrightarrow{0.08} e^+ \end{array}$$

Future:

- explicite calculations of decays $c \to D^* \to D^{0,+} \to e^+$
- different fragmentation functions

・ロト ・聞 ト ・ ヨト ・ ヨト