Studies of Open Charm and Charmonium Production at LHCb

Giulia Manca (University of Cagliari and INFN , Italy) On behalf of the LHCb Experiment

11th International Workshop on Meson Production and Interaction KRAKÓW, POLAND, 10th – 15th June 2010

Outline

Motivation

- →Cern and the LHC
- The LHCb experiment
- \rightarrow J/ ψ production

- Open charm (few selected results)
- Conclusions and outlook

CERN and the LHC

ie=UTF8&ll=45.73686...

THE LHCb DETECTOR

THE LHCb DETECTOR

THE LHCb DETECTOR

The LHCb detector

Angular acceptance : 10<θ<300 mrad

- Performance numbers relevant to quarkonium analyses:
 - Charged tracks $\Delta p/p$ = 0.35 % 0.55%, σ (m)=10–25 MeV/c²
 - ECAL $\sigma(E)/E=$ 10% (E/GeV)^{-1/2} \oplus 1 %
 - Muon ID: $\varepsilon(\mu \rightarrow \mu) = 97\%$, mis-ID rate $(\pi \rightarrow \mu) = 1-3\%$
 - Vertexing: proper time resolution 30-50 fs
 - Trigger: dominantly software

possibility to reverse field polarity to check for detector asymmetries

Luminosity

All plots include the full luminosity L=14 nb⁻¹ unless otherwise stated

J/ψ Production

PHYSICAL REVIEW LETTERS

one with approximated with a lead convertn planes $(2 \times A_0, 3 \times A)$ chambers rotated apt to each other to re-To further reduce the ambers at high rate, izontal hodoscope chambers A and B. C (1 m×1 m) there iss counters of 3 raed by one bank of ther reject hadrons ove track identificat all the counters are 5 computer and all very 30 min. red with a three-dital of 10⁵ points were settings. The accep $s \Delta \theta = \pm 1^\circ, \Delta \varphi = \pm 2^\circ,$ trometer enables us n from 1 to 5 GeV in

e-of-flight spectrum in the mass region beak of 1.5-nsec width us to reject the accinstruction between the tin we have a clear-

FIG. 2. Mass spectrum showing the existence of J_*

Motivations

- The production mechanism in pp collisions still unclear
- ➡ Several models around :
 - Color singlet and color octet mechanisms (NRQCD) describe the p_T spectrum and cross section of the J/ ψ as measured by Tevatron, but not the polarization (and has other failures)
 - Other models such as color evaporation model, kt factorization, soft color interaction model cannot describe the data either
- New data from LHC experiments will help to resolve this issue

 J/ψ cross section crucial milestone in understanding detector and first step to B cross section measurement

J/ψ Production at pp

LHCb Trigger

Measure muon trigger efficiencies using trigger lines not involving muons

LO x HLT1 Efficiency $J/\psi \rightarrow \mu\mu$

Muon Reconstruction Efficiency

J/ψ

Data Observed

- → J/ψ rate ≈300/nb⁻¹
- Mass resolution ≈16 MeV/c²
- ightarrow t_z used to separate J/ ψ prompt from (J/ ψ from B)

$J/\psi~p_T$ and y spectra

ightarrow In each bin, J/ ψ yield extracted from mass distribution

- no correction applied
- spectrum contains prompt J/ ψ and b ightarrow J/ ψ
- Variables to be used for the cross section calculation in bin of y,pt (expected in late summer);

J/ψ Acceptance

Influence of J/ ψ Polarization

Detector acceptance as a function of helicity angle cosθ

- ➡ LHCb acceptance generates an artificial polarization
 → large influence of polarization on measurement
- First step: Treat polarization as systematic error

Systematics from J/ ψ polarization

→ Study the effect of ignoring the polarization dependence of the efficiency (J/ ψ are not polarized in the LHCb Monte Carlo)

$lpha_{ m wdata m s}$	$\sigma_{Measured} \alpha=0$	Input $\sigma_{ m wdata}$	
0	2758 nb ± 27 nb	2820 nb	Systematic of up to 25 %
+1	2738 nb ± 27 nb	3190 nb	
-1	2787 nb ± 28 nb	2286 nb	

► Follow up: <u>Measure polarization</u>

- \checkmark in bins of η and \textbf{p}_{T}
- \checkmark separating prompt and J/ ψ from b
- ✓ with full angular analysis, in different reference frames

Example Cross section Measurement @/s=14 TeV

- Study fit procedure to determine cross section
 - Signal: Inclusive J/ψ sample
 - <u>Background</u>: toy Monte-Carlo reproducing behaviour (mass and pseudo-lifetime) seen on the Minimum Bias sample
 - Sample corresponding to 0.8 pb⁻¹, $\sqrt{s} = 14$ TeV

Open Charm

Open Charm Production at LHCb

Open Charm Triggers

Lower luminosity

- trigger thresholds relaxed
- ->great opportunity for charm physics!

D^{0} -> $K\pi$ Decay

- → Untagged and tagged (from D* decay) D^0 -> $k\pi$ decays
- Uncalibrated masses within few permilles of PDG value
- High yields -> excellent modes for cross section estimate
- ➡ Towards the D⁰-D⁰bar mixing measurement

More Charm Signals

Open charm signals from minimum bias 2010 first data

New physics in $D^0 \rightarrow \mu^+ \mu^-$

- Highly suppressed decay in the SM: BR(D⁰→µ⁺µ⁻)≈3.10⁻¹³
- Can be enhanced in MSSM with R-parity violation up to 10⁻⁷
- → Current best experimental limit by Belle BR($D^0 \rightarrow \mu^+\mu^-$)<1.4 10⁻⁷ @ 90%CL (arXiv:1005.5445)
- ➡ Analysis overview :
 - Use $D^* \rightarrow D^0 \pi$
 - Preselection cuts
 - Multivariate analysis based on impact parameter, pT, difference in ϕ and η between the D° and soft π

 \overline{u} -

- Normalization to $D^0 \rightarrow \pi\pi$
- \Rightarrow Similar to ${\rm B_s} {\rightarrow} \mu \mu$ but more difficult due to lower invariant mass and higher background

→ LHCb prospects: Expected limit for 100 pb⁻¹:

BR(D⁰→ $\mu^+\mu^-$) < 4.10⁻⁸ @ 90% CL

 $\tilde{\lambda}_{12k}$

 \widetilde{q}_k

 $\tilde{\lambda}_{22k}$

 μ^{-}

Charm physics prospects

→1 pb⁻¹:

- cross sections mesurements :
 - > Double differential in pt and y (D^o->k⁻ π ⁺,
 - $D^+ k^- \pi^+ \pi^+$, $D_s^+ k^- k^+ \pi^+$, $D^{*+} D^0 \pi^+$, $\Lambda_c^+ p k^- \pi^+$)
- →100 pb⁻¹:
 - Rare decays : D⁰->μμ,
 - **D**^o mixing:
 - >Time dependent : D^{0} ->k⁺ π^{+}
 - ightarrow y_{CP} from time differences (D^o->k⁺k⁻, $\pi^+\pi^-$)
 - Direct CP violation in 3 body decays

Conclusions and Outlook

- LHC and LHCb are in great shape and LHCb is taking data with high efficiency
- All the analysis tools are in place and start to deliver physics results
 - J/W events clearly reconstructed
 - Crucial standard candle for detector understanding as well as cross check of luminosity
 - Cross section measurements probe of non-relativistic
 QCD theories
 - Open charm peaks well reconstructed, physics program setup and waiting for more statistics

Ready for the first measurements! Stay tuned!

Primary Vertex resolution

Muon mis-identification

This plots shows the probability to misidentify a pion from Ks and a proton from Lambda as a muon as a function of momentum.

Kaon Efficiency

D⁰->Kπ Decay

Measurement of y_{CP}

Jorg Marks

 \succ Decay time of D⁰'s is exponential with modifications due to mixing

$$\tau^{\pm} = \frac{\tau^{0}}{1 + |q/p|(y\cos\phi_{f} \mp x\sin\phi_{f})} \qquad \tau^{\pm}: \text{lifetime of } \mathsf{D}^{0} \ (\overline{\mathsf{D}}^{0}) \to \mathsf{CP+ eigenstates} \\ \tau^{0}: \text{lifetime of } \mathsf{D}^{0} \to \mathsf{CP} \text{ mixed (CF)}$$

A lifetime difference between CP+ and CP mixed states gives access to mixing $y_{CP} = \frac{\tau^{0}}{\tau} - 1 \quad \text{or}$ $y_{CP} = \frac{\tau(K^{-}\pi^{+})}{\tau(K^{-}K^{+})} - 1 = \frac{\tau(K^{-}\pi^{+})}{\tau(\pi^{-}\pi^{+})} - 1 = |q/p|(y\cos\phi_{f} - x\sin\phi_{f})$ $y_{CP} \neq 0 \quad \Rightarrow \text{ D}^{0}-\overline{\text{D}}^{0} \text{ mixing}$

➤ Test of CP violation $\Delta Y = \frac{\tau^0 A_{\tau}}{\tau} \quad \text{with} \quad A_{\tau} = \frac{\tau^+ - \tau^-}{\tau^+ + \tau^-} = -A_{\Gamma}$ $\Delta Y \neq 0 \quad \Rightarrow \quad \text{CP violation in D}^0 - \overline{D}^0 \text{ mixing}$ CP violation in interf. between mixing and decay $y_{CP} = y \quad \Leftarrow \quad \text{CP conservation}$

LHCb : Towards y_{CP} and $A_{\Gamma}_{Jorg Marks}$

 \blacktriangleright Compare $D^0 \to KK$, $D^0 \to \pi\pi$ and $D^0 \to K\pi$ to extract y_{CP} and A_{Γ}

- Analyse the D^0 decay time distributions
 - Determine $\langle \tau_{KK} \rangle_i / \langle \tau_{K\pi} \rangle_i$ in bins i of the lifetime distribution
 - Determine $\tau_{K\pi}$, τ_{KK}^+ , τ_{KK}^- from unbinned max. likelihood fits to the lifetime distributions
- Expected events in $\int \mathcal{L} \approx 100 \ pb^{-1}$:

 $N_{100 \ pb^{-1}}(D^0 \to K\pi) \approx 13 \cdot 10^6$

 $N_{100 \ pb^{-1}}(D^0 \to KK) \approx 7.5 \cdot 10^5$

factor 10 more data than the *BABAR* analysis B. Aubert et al., Phys. Rev. D80 071103 (2009)

Direct CP Violation Searches in SCS Decays

Jorg Marks

- Single Cabbibo suppressed decay (SCS)
 - CPV in SM is CKM and loop suppressed (CPV < O (10^{-3}))
 - SCS decays are sensitive to CPV in $c \rightarrow uq\bar{q}$ transitions Contributions due to supersymmetric $\Delta C = 1$ QCD penguins could enter.

Y. Grossman et al.

Phys. Rev. D75 036008 (2007)

- \rightarrow measurement of large CPV would be a sign of NP
- Search for CPV in SCS tagged $D^0 \to \pi^+\pi^-\pi^0$, $D^0 \to K^+K^-\pi^0$ by BABAR B. Aubert et al.
 - → results are in accord with SM predictions (few %) Phys. Rev. D78 051102 (2008)
- ➢ Model independent Dalitz Plot analysis to look for CP asymmetries Miranda procedure arXiv 0905.4233 Consider the significance in the difference between_ corresponding Dalitz plot bins. $D_{p}S_{CP} = \frac{N(i) - N(i)}{\sqrt{N(i) + N(i)}}$
 - Provides better filtering between real asymmetries and statistical fluctuations
 - Not sensitive to production asymmetries

Physics at LHC 2010: Charm Physics Results from LHCb

Jörg Marks

LHCb : Direct CP Violation Search Jorg Marks

 \blacktriangleright Dalitz analysis of the SCS decay $D^+ \rightarrow K^+ K^- \pi^+$

Time integrated and model independent search for local CP asymmetries in bins of the Dalitz plane.

• Two suitable control channels: $D_s^+ \to K^+ K^- \pi^+$ and $D^+ \to K^- \pi^+ \pi^+$

Averaged Mixing Parameters

Jorg Marks

Mixing parameter as combined by the HFAG charm group

Exclude no mixing case at 10.2 σ

Fully compatible with the CP conservation

Untagged D \rightarrow K π ,KK, $\pi\pi$ $\approx 2.7 \text{ nb}^{-1}$ Patrick Spradlin

Tagged $D \rightarrow K\pi$

≈ 2.7 nb⁻¹ Patrick Spradlin

Tagged $D \rightarrow KK$

≈ 2.7 nb⁻¹ Patrick Spradlin

Lifetime fit of untagged $D^0 \rightarrow K\pi$

Untagged $D^0 \rightarrow K\pi\pi^0$

$D \rightarrow K \pi \pi$

≈ 2.6 nb⁻¹ Hamish Gordon

$D_{(s)} \rightarrow KK\pi$

≈ 2.6 nb⁻¹ Hamish Gordon

$D^* \rightarrow D^0 \pi, D^0 \rightarrow K \pi \pi \pi$

≈ 1.6 nb⁻¹ Benoit Viaud

Plots tightened w.r.t. LHCC selection - see:

http://www-pnp.physics.ox.ac.uk/≈spradlin/CharmPeaks/D024H/Viaud/index.html