Recent Results on CP-Violation at the BaBar and Belle B-Factories

CP violation and the CKM matrix

quark decay

Cabibbo Kobayashi Maskawa matrix

(V_{ud})	V_{us}	V_{ub}	$\left(1-\frac{1}{2}\lambda^2\right)$	(Wolfenstein λ	n parametrizatio $A\lambda^3(\rho - i\eta)$
V_{cd}	V_{cs}	$V_{cb} =$	$-\lambda$	$1 - \frac{1}{2}\lambda^2$	$A\lambda^2$
V_{td}	V_{ts}	V_{tb}	$\int A\lambda^3(1-\rho-i\eta)$	$-A\lambda^2$	1

Non-trivial CP violating phases. Amplitude interference different for quark vs anti-quark decay. Observable rate differences.

The Unitarity Triangle

SM prediction: ALL measurements of *W*-mediated quark processes must be consistent with the CKM framework.

Overall Status of the triangle

The experimental method

• fighting main background (e⁺

$$(e^+e^- \rightarrow q\bar{q})$$

• most important discriminating quantities:

$$\boldsymbol{m}_{es} = \sqrt{\boldsymbol{E}_{beam}^{*2} - \boldsymbol{p}_{B}^{*2}}$$
$$\Delta \boldsymbol{E} = \boldsymbol{E}_{B}^{*} - \boldsymbol{E}_{beam}^{*}$$

• topological cuts (Fisher discr. or neural net)

All *B* decays are CKM suppressed, with
$$b \rightarrow c$$
 decays dominant

$$\Gamma \propto G_F^2 |V_{cb}|^2 m_b^5 \qquad |V_{cb}| \simeq 0.04 \qquad |V_{cb}|^2 \simeq 1.6 \times 10^{-3}$$

$$c\tau_B = (3 \times 10^8 \text{ ms}^{-1})(1.6 \times 10^{-12} \text{ s}) = 0.48 \text{ mm}$$
How far will *B* mesons travel before decaying?

$$\Delta \ell_{1ab} = v \cdot \Delta t_{1ab} = \beta c \cdot \Delta t_{1ab}$$

$$\Delta t_{1ab} = \gamma \cdot \Delta t_{B \text{ rest}}$$

$$\Rightarrow \Delta \ell_{1ab} = \beta \gamma \cdot c \Delta t_{B \text{ rest}}$$

Ē

 γ

(4*S*

 $\overline{B}^{0}(b\overline{d})$

B°B°correlated until one decays

From Jeff Richman's Mexico Physics School Lectures (2008) http://hep.ucsb.edu/people/richman/richman.html

The reward

Makoto Kobayashi and Toshihide Maskawa awarded 2008 Nobel Prize in Physics for their theory which simultaneously explained the source of matter/antimatter asymmetries in particle interactions and predicted the existence of the third generation of fundamental particles.

The BaBar experiment at the SLAC National Accelerator Laboratory in the U.S., together with the **Belle experiment at KEK** in Japan, recently provided experimental confirmation of the theory, some thirty years after it was published, through precision measurements of matter/antimatter asymmetries.

The Nobel Prize in Physics 2008 and the B FACTORIES SLAC

BaBar

The Nobel Prize in Physics 2008 was awarded to

Broken Symmetries Predicted Extra Quarks

Matter and antimatter are nearly exact apposites of each other But this near-perfect symmetry is broken in nature as we observe it. In 1972, Kobayashi and Maskawa discovered that the root of the mystery could be exploited by the properties of quarks, the fundamental constituents of autoos and neutrons but only if there were three more types of quarks than had previously been observed. At that time, experimenters had seen the up, down, and strange quarks, but the charm, bottom, and top would not be discovered until later

B Factory Experiments Confirmed the Predictions

Experiments of the B factories in the United States and Japan in the early 2000s made detailed investigations of billions of high-energy particles containing bottom quarks. International Collaborations at the B factories made numerous measure ments of the parameters of the Cabibbo, Kobayashi, and Maskawa (CKM) mixing matrix and confirmed the precise links of these with the observed differences between matter and antimatter. The B factories each consist of an accelerator and a particle detector. At the SLAC National Accelerator Laboratory in California, USA, the PEP-II accelerator provides the callisions observed by the BoBar detector. At KEK in Tsukuba, Japan, the KEK-B occalerator supplies the Belle detector with the particles needed for these studies.

"Please accept our deepest respect and gratitude for the B factory achievements. In particular, the high-precision measurement of CP violation and the determination of the mixing parameters are great accomplishments, without which we would not have been able to earn the Prize."

着 ·1 站革 (Touther Note Mostowe

"for the discovery of the origin of the broken symmetry which predicts the existence of at least three families of quarks in nature'

KEK-B

ee: http://www-public.slac.stanford.edu/babar/Nobel2008.htm

The BaBar experiment

Multipurpose particle detector at SLAC used to observe collisions of e⁺e⁻ PEPII beams of asymmetric energies primarily at the Y (4S) mass peak (10.58 GeV)

Recorded Data Samples:

Y(3S): 30 fb⁻¹ Y(2S): 15 fb⁻¹

√s [GeV]

10.8

BABAB

22 billion events (~9 billion after filters applied)

~470 million $B\overline{B}$ events

Belle detector records data delivered by KEKB asymmetric Bfactory ($\beta \gamma = 0.425$) running at the Y (4S) mass peak (10.58 GeV) at KEK.

Recorded Data Samples: Y(5S): 121 fb⁻¹ Y(4S): 711 fb⁻¹ Y(3S): 3 fb⁻¹ Y(2S): 24 fb⁻¹ Y(1S): 5.7 fb⁻¹

runinfo ver.1.59 Exo3 RunI - Exo73 Run589 BELLE LEVEL latest: day is no

Time-dependence of Dalitz plot in $B^0 \rightarrow K^+ K^- Ks$ Α R K⁺K⁻K_s $(1020)K_{s}$ Β B^0 f₀(980)K c.f. Time-dependence $K^+K^-K_s$ B^0 Dalitz-plot **Time-dependence** Interference in $B^0 \overline{B^0} (\phi_{1.eff})$ + intermediate states (Dalitz phase) CP asymmetry ($\phi_{1.eff}, A_{CP}$) of B $\rightarrow \phi$ (1020) K_s using Time-dependent Dalitz plot analysis in $B \rightarrow K^+K^-Ks$

Dalitz plot fit results

Results from BaBar and Belle on Direct CPV using Dalitz plot analyses

Measuring γ

• From interference of the decay amplitudes

 γ in the interference term between transitions $b \rightarrow c \bar{u} s$ and $b \rightarrow u \bar{c} s$ when we reconstruct a final state accessible to both: $K_s \pi \pi$, $K_s KK(GGSZ)$

- Use final state accessible from both D° and D°
 - Methods:
 - * Gronau, London, Wyler Method,
 - * Atwood, Dunietz, Soni Method

(incl. DCS decays of the D meson)

* Dalitz plot

 $r_b = \left| \frac{A(b \to u)}{A(b \to c)} \right|$

Strong (CP conserving) phase difference δ between $A(b \rightarrow u)$ and $A(b \rightarrow c)$

Common hadronic parameters

CP violation in the measurement of the CKM angle γ with $B^{\pm} \rightarrow \ D^{*} \ K^{*\pm}$ decays

 γ in the interference term between transitions $b \rightarrow c \bar{u} s$ and $b \rightarrow u \bar{c} s$ when we reconstruct a final state accessible to both: $K_s \pi \pi$, $K_s KK(GGSZ)$

«... the full sub-resonance structure of the three-body decay is considered, involving also Cabibbo allowed decays. » - utfit.org

CP violation in the measurement of the CKM angle γ with B[±] $\rightarrow~$ D * K $^{*\pm}$ decays

Measurement of the CKM angle γ using a GLW analysis of B[±] \rightarrow D(CP) K[±] decays at BaBar

Measurement of the CKM angle γ using a GLW analysis of B[±] \rightarrow D(CP) K[±] decays at BaBar

- Reconstruct $B^{\pm} \rightarrow D K^{\pm}$
 - D meson is reconstructed in CP-eigenstates and
 - Non-CP final states

Preliminary Results:

(submitted to PRD)

- $A_{CP+} = 0.25 \pm 0.06(\text{stat}) \pm 0.03(\text{syst})$
- $A_{CP-} = -0.09 \pm 0.07 (\text{stat}) \pm 0.02 (\text{syst})$
- $R_{CP+} = 1.18 \pm 0.09(\text{stat}) \pm 0.06(\text{syst})$
- $R_{CP-} = 1.07 \pm 0.08(\text{stat}) \pm 0.05(\text{syst})$

Improves over old result with:

- 20% more data;
 467 million BB decays
- Improved fit strategy
- Now constrains γ

Measurement of the CKM angle γ using a GLW analysis of B[±] \rightarrow D(CP) K[±] decays at BaBar

Preliminary Results:

(submitted to PRD)

At the 68% CL :

γ belongs to one of the three intervals $[11.3^{\circ}, 22.7^{\circ}],$ [80.9°, 99.1°] or [157.3°, 168.7°] and $0.24 < r_{_B} < 0.45$

BaBar ADS analysis:
$$b \rightarrow u$$
 transitions in
B⁻ \rightarrow D⁰K⁻ and B⁻ \rightarrow D^{*0}K⁻ decays

In the ADS technique the amplitudes are equalized

Atwood, Dunietz, Soni (ADS), PRL 78, 3257 (1997) & PRD 63, 036005 (2001) $B^{favored} B^{-} \rightarrow D^{0}K^{-} \qquad D^{0} \rightarrow K^{+}\pi^{-} \searrow$ suppressed $B^{-} \rightarrow \overline{D}^{0}K^{-} \qquad \overline{D}^{0} \stackrel{favored}{\rightarrow} K^{+}\pi^{-} \swarrow$ $[K^{+}\pi^{-}]_{D}K^{-}$

Small BF(~10-7), but A2 = O(A1): expect large CPV

$$\begin{split} R_{ADS} &= \frac{BF([K^+\pi^-]K^-) + BF([K^-\pi^+]K^+)}{BF([K^-\pi^+]K^-) + BF([K^+\pi^-]K^+)} = r_D^2 + r_B^2 + 2r_Br_D\cos(\delta_D + \delta_B)\cos\gamma\\ & \text{ Amount of interference depends on CKM angle } \gamma/\phi_3\\ A_{ADS} &= \frac{BF([K^+\pi^-]K^-) - BF([K^-\pi^+]K^+)}{BF([K^+\pi^-]K^-) + BF([K^-\pi^+]K^+)} = 2r_Br_D\sin(\delta_D + \delta_B)\sin\gamma/R_{ADS}\\ & \text{ CP asymmetry can be very large} \end{split}$$

BaBar ADS analysis: $b \rightarrow u$ transitions in $B^{-} \rightarrow D^{0}K^{-}$ and $B^{-} \rightarrow D^{*0}K^{-}$ decays

•Clear evidence for $B \rightarrow D^{(*)}\pi$ DCSD

•Indication of a D⁰K ADS signal at the 2.1 σ level and D^{*0}K at the 2.2 σ level (D⁰ π^{0})

BaBar Preliminary Results:

 $\mathcal{R}_{DK} = (1.1 \pm 0.5 \pm 0.2) \times 10^{-2}$. $\mathcal{R}^*_{DK, D^0 \pi^0} = (1.8 \pm 0.9 \pm 0.4) \times 10^{-2}$. $= r_B^2 + r_D^2 + 2 r_B r_D \cos \gamma \cos \delta$

BaBar Preliminary Results:

 $\mathcal{A}_{DK} = -0.86 \pm 0.47 \,^{+0.11}_{-0.15} \,. \qquad \mathcal{A}^*_{DK,D^0\pi^0} = +0.77 \pm 0.35 \pm 0.12.$

 $= 2 r_B r_D \sin \gamma \sin \delta / \mathcal{R}_{DK}$

CP Violation in D decays at the B-factories

1.3 million charm events per /fb at Y(4S) (Y(4S): cc cross section = 1/4 observed total)

Charm meson Tagging and Selection

- Tagging at production:
 - Inclusive D* production. Using $D^{*\pm} \rightarrow D^0 \pi_s^{\pm}$ decays.
 - The flavor of the D^0 is determined by the charge of the π_s .
- Tagging at decay:
 - The flavor can be determined by the wrong sign (WS) or right sign (RS) D⁰ decay products. $D^0 \to K^- \pi^+ \pi^0$ right-sign (RS)

 $D^0
ightarrow K^+ \pi^- \pi^0$ wrong-sign (WS)

• Selection:

- − e^+e^- → cc events have high D^0 momentum in the CM frame.
 - Use momentum to reject BB events ($p_{D0}^{CMF} > 2.5 \text{ GeV/c}$)
- Beam spot constraint determines t and $\sigma_{t \text{ and}}$ improves m_D and $\Delta m = m(D^0 \pi_s) m(D^0)$ resolutions.

D⁰ mixing: **D**⁰ \rightarrow KK vs K π and y_{CP}

- Since 2007 evidence, $D^0 \leftarrow \rightarrow \overline{D}^0$ mixing established by combination of many measurements.
- D^o mixing and CP violation alter decay time distribution of CP eigenstates
- – No single measurement with $>5\sigma$ significance.

 D_1

Da

$$= p |D^{0}\rangle + q |\overline{D}^{0}\rangle$$

= $p |D^{0}\rangle - q |\overline{D}^{0}\rangle$ In the limit of *CP* conservation: $\begin{array}{c} D_{1} = CP + \\ D_{2} = CP - \end{array}$

• If CP is conserved (CPV<0.1% in SM) D0 \rightarrow K+K- directly measures Γ 1.

$$y_{CP} \equiv \frac{\tau_{K\pi}}{\tau_{KK}} - 1 = y$$

$$y_{CP} = \frac{\tau_{K\pi}}{\tau_{KK}} - 1 = y$$

$$f_{CP} = \frac{\tau_{K\pi}}{\tau_{KK}} - 1 = y$$

D⁰ mixing: **D**⁰ \rightarrow KK vs K π and y_{CP}

Lifetime ratio $D^0 \rightarrow h^+ h^- / D^0 \rightarrow K^- \pi^+$

PRL 98, 211803 (2007) – Belle

 $y_{CP} = (1.31 \pm 0.32 \text{ (stat)} \pm 0.25 \text{ (syst)}) \cdot 10^{-2}$ A = (0.01 ± 0.30 (stat) ± 0.15 (syst)) \cdot 10^{-2}

Mixing evidence at 3.2 σ

PRD 78, 011105(R) (2008) - BaBar

Tagged:

 $y_{_{\rm CP}}$ = (1.03 ± 0.33 (stat) ± 0.19 (syst))·10⁻²

 $\Delta y = (-0.26 \pm 0.36 \text{ (stat)} \pm 0.08 \text{ (syst)}) \cdot 10^{-2}$

Mixing evidence at 3σ

PRD 80, 071103(R) (2009) - BaBar

Combined tagged + untagged: $y_{CP} = (1.13 \pm 0.22 \text{ (stat)} \pm 0.18 \text{ (syst)}) \cdot 10^{-2}$

Mixing evidence at 4.1σ

HFAG averages (measurements of y_{CP})

http://www.slac.stanford.edu/xorg/hfag/charm/index.html

Last Full Fit γ/ϕ_3 Results

Frequentist interpretation

http://ckmfitter.in2p3.fr

μ supremum method used to combine HFAG averages of experimental inputs (conservative, but guarantees coverage). See Karim Trabelsi's talk at CKM 2008 for details.

Bayesian interpretation

bound from

 $B \rightarrow DK$, D*K and DK* decays with present measurements using all the methods.

y = 78 ± 12 ([54,102] @ 95% Prob.)

See:

http://www.utfit.org/gamma/ckm-gamma.html

Conclusions

- New results from Belle and BaBar in particular for the CKM angle γ/ϕ_3 :
 - Results from BaBar and Belle on Direct CPV using Dalitz plot analyses (new meaurement on β and γ)
 - Measurement of the CKM angle γ using a GLW analysis of B[±]→D(CP) K[±] decays at BaBar
 - BaBar ADS analysis: $b \rightarrow u$ transitions in $B^- \rightarrow D^0 K^-$ and $B^- \rightarrow D^{*0} K^$ decays (new result on γ)
 - D⁰ mixing: D⁰ \rightarrow KK vs K π and y_{CP}

Conclusions (continued)

- The data collection has ended but expect many more new and improved measurements and for the statistically limited measurements we look forward to the SuperB and BELLEII factories
- Many thanks to the Meson2010 organizers and the funding agencies

The end ...

Results from the Full Fit (utfit.org)

Dalitz plot fit results

BELLE

	Solution 1	Solution 2	Solution 3	Solution 4
$\mathcal{A}_{CP}(f_0K_S^0)$	$-0.30\pm0.29\pm0.11\pm0.09$	$-0.20\pm0.15\pm0.08\pm0.05$	$+0.02\pm0.21\pm0.09\pm0.09$	$-0.18\pm0.14\pm0.08\pm0.06$
$\phi_1^{\text{eff}}(f_0 K_S^0)$	$(31.3 \pm 9.0 \pm 3.4 \pm 4.0)^{\circ}$	$(26.1 \pm 7.0 \pm 2.4 \pm 2.5)^{\circ}$	$(25.6 \pm 7.6 \pm 2.9 \pm 0.8)^{\circ}$	$(26.3 \pm 5.7 \pm 2.4 \pm 5.8)^{\circ}$
$A_{CP}(\phi K_S^0)$	$+0.04\pm0.20\pm0.10\pm0.02$	$+0.08\pm0.18\pm0.10\pm0.03$	$-0.01\pm0.20\pm0.11\pm0.02$	$+0.21\pm0.18\pm0.11\pm0.05$
$\phi_1^{\text{eff}}(\phi K_S^0)$	$(32.2 \pm 9.0 \pm 2.6 \pm 1.4)^{\circ}$	$(26.2 \pm 8.8 \pm 2.7 \pm 1.2)^{\circ}$	$(27.3 \pm 8.6 \pm 2.8 \pm 1.3)^{\circ}$	$(24.3 \pm 8.0 \pm 2.9 \pm 5.2)^{\circ}$