

Analysis of $\eta \rightarrow \pi^+ \pi^- \gamma$ measured with the WASA facility at COSY

June 14, 2010 | Christoph Florian Redmer for the WASA-at-COSY Collaboration

Motivation

Wess,Zumino, Phs.Lett. B 37 (1971) 95 Witten, Nucl Phys B 223 (1983) 422

Include FSI by unitarized extensions:

- momentum dependent VMD
 Picciotto Phys. Rev. D45 (1992) 1569
 Bijnens Nucl. Phys. B637 (1991) 709
- one loop + Omnes function
- Chiral Unitary Approach
- Hidden Local Symmetries

Benayoun et al EPJ C 31 (2003) 525

Phys Scr T99 (2002) 55

Nucl Phys A 740(2004) 362

Borasoy, Nissler

Holstein

new measurement

Previous Measurements:

- 7250 events
 M. Gormley et al.
 Phys.Rev. D2 (1970) 501

 18150 events
 J. G. Layter et al.
 Phys.Rev. D7 (1973) 2565
- Iow in statistics
- Iargest samples not efficiency corrected
- ambiguous theoretical interpretation of the samples

The WASA facility at COSY

- high density pellet target
- 4π acceptance
- charged and neutral particle detection

- p, d beams up to 3.7 GeV/c
- high intensity
- phase space cooling

MESON 2010 Cracow, June 14, 2010

C. F. Redmer - Department of Physics and Astronomy, University of Uppsala

η→π⁺π⁻γ at WASA

Event Selection

- $\blacksquare \pi$ and γ candidates selected
- Missing Mass (³He γ) \geq 2 m_{π}
- reduction of hadronic splitoffs
- cut on π^0 in Missing Mass (³He $\pi^+\pi^-$)

dominated by pd \rightarrow $^{3}\text{He}~\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$

- Kinematic Fit
 - 4*C* (energy and momentum)
 - cut on probability $P(x_{KF}, N) > 0.1$
 - resolution improved by factor 10

Background Subtraction

For each bin of a distribution:

- **c**alculate invariant mass of $\pi^+\pi^-\gamma$
- fit signal and background
- count signal events

Background from η decays is subtracted using Monte Carlo distributions

After background subtraction:

13738 ± 136 events

UNIVERSIT

 $\cos(\theta)$: Angle between γ and π^+ in the pion-pion rest frame

p-wave: $\frac{d\,\sigma}{d(\cos\theta)} = A \cdot \sin^2\theta$

$$p - wave + d - wave:$$
$$\frac{d\sigma}{d(\cos\theta)} = A \cdot \sin^2 \theta \cdot (1 + \beta \cos^2 \theta)$$

$$p - wave + f - wave:$$
$$\frac{d\sigma}{d(\cos\theta)} = A \cdot \sin^2 \theta \cdot \left(1 + F(5\cos^2 \theta - 1)^2\right)$$

 $\mathbf{n}^+ \mathbf{n}^-$ system in relative p – wave

contributions of higher partial waves negligible

simplest matrix element does not describe data

description of FSI important

Summary

Published data of low statistics, significant sets not efficiency corrected

WASA-at-COSY has a clean, high statistics sample of $\eta \rightarrow \pi^+\pi^-\gamma$

Studies of Dalitz plot distributions show:

- pions in relative p-wave, no evidence for higher partial waves
- FSI important to describe photon energy spectrum
 - test of effective theories

Outlook

- three times more statistics available (pd \rightarrow ³He η)
- **a** an 8 week production run just finished (pp \rightarrow pp η)
 - the statistics of this work corresponds to 2 3 days of $pp \rightarrow pp \eta$

ongoing improvements on systematic errors:

- efficiency correction with VMD based distributions
- alternative / additional means of multi pion suppression
- charged particle reconstruction
- determination of the box anomaly contribution
- **•** gain insight into anomalies of QCD with $\eta \rightarrow \pi^+\pi^-\gamma$

Backup

UPPSALA UNIVERSITET

- small distance to tracks
- small energy deposits

MESON 2010 Cracow, June 14, 2010

C. F. Redmer - Department of Physics and Astronomy, University of Uppsala

90

80

70

60

50

40

30

20

10

O

Event Selection

- $\blacksquare \pi$ and γ candidates selected
- Missing Mass (³He γ) \geq 2 m_{π}
- reduction of hadronic splitoffs
- cut on π^0 in Missing Mass (³He $\pi^+\pi^-$)

dominated by pd \rightarrow ³He $\pi^{+}\pi^{-}$

→ use Kinematic Fit

- gain in resolution
- additional background suppression

UNIVERSITET

Kinematic Fit

- 4C Fit (four-momentum conservation, no η mass constraint)
- Cut on Probability > 10%
- Invariant Mass resolution improved from 80 MeV to 9 MeV (FWHM)

Parametrization of the Dalitz Plot

Here:

simplest gauge invariant matrix element with p-wave interaction of the pions

Efficiency

- average efficiency: 7%
- Monte Carlo distributions:
 - phase space
 - simplest matrix element

corrections based on the simplest gauge invariant matrix element

matches observed angular distribution of the pions

regions without acceptance due to cut on splitoffs

C. F. Redmer - Department of Physics and Astronomy, University of Uppsala

Systematic Checks

- conditions on energy-momentum conservation prior to kinematic fit
- suppression of hadronic splitoffs
- probability distribution of the kinematic fit
- background subtraction
- efficiency correction
- accelerator mode
- Iuminosity

conditions for background suppression most influential

Dalitz Plot Distributions

- simplest matrix element does not describe data (blue)
- better agreement with VMD (red)
- p wave interaction
- higher partial waves negligible