# Experimental Search for the kaonic nuclear state, K-pp, in proton induced reaction

istalling the target callin a vacuum vessel





Ken Suzuki

Stefan-Meyer-Institut, Austrian Academy of Sciences MESON2010, Kraków, 11 June 2010

# Kaonic Nucl. Search

E15@J-PARC previous talk

topic continues from the

previous talk

# **FOPI experiment** K. Suzuki et al., NPA827 (2009) 312

Experiment (-September 2009), Analysis in progress

#### - **DISTO** experiment

T.Yamazaki et al., PRLI04 (2010) 132502

-AMADEUS experiment talk by J. Zmeskal

6

#### Introduction



#### Kaonic hydrogen puzzle, just ~10 years ago key ingredient: K<sup>bar</sup>N interaction



M. Iwasaki et al., Phys. Rev. Lett. 78 (1997) 3067

Ken Suzuki



Experimental principle

"ordinary process"

# $p + p \rightarrow \Lambda + p + K^+$

Ken Suzuki

11.06.2010



Experimental principle

"exotic process"

 $p + p \rightarrow \underline{K}^- pp + K^+$ · D

Ken Suzuki

11.06.2010



Experimental principle

"exotic process"

 $p + p \rightarrow "K^-pp" + K^+$ · D

Ken Suzuki

11.06.2010





"exotic process"

#### Production Channel Missing Mass: K<sup>+</sup>

<u>- p</u>  $\mathcal{D}$ 

Ken Suzuki

11.06.2010



From Decay Channel Invariant Mass: Λ(π<sup>-</sup>+p)+p

11.06.2010

der Wissenschaft



#### Exclusive measurement

with a large acceptance detector

Ken Suzuki

### Background Suppression



#### Channels which can have same event topology as signal



#### :2 proton, I $\pi^-$ and I K<sup>+</sup> in backward

| chi | threshol | reaction                                                         | @Tp=3.0GeV |
|-----|----------|------------------------------------------------------------------|------------|
| 77  | 2.798    | Λ+p+π <sup>+</sup> +π <sup>0</sup> +π <sup>-</sup>               | 2          |
| 79  | 2.382    | $\Lambda + p + \pi^+ + \pi^- + K^+$                              | 11         |
| 83  | 1.958    | Λ+p+π <sup>0</sup> +K <sup>+</sup>                               | 96         |
| 84  | 1.582    | <b>∧+</b> р+К⁺                                                   | 339        |
| 97  | 2.592    | Σ++p+π <sup>0</sup> +π-+K+                                       | 2          |
| 99  | 2.185    | Σ*+p+π <sup>-</sup> +K <sup>+</sup>                              | 52         |
| 106 | 2.616    | Σ <sup>0</sup> +p+π <sup>+</sup> +π <sup>-</sup> +K <sup>+</sup> | 3          |
| 108 | 1.794    | Σ <sup>0</sup> +p+K+                                             | 123        |
| 120 | 2.348    | Σ(1385) <sup>-</sup> +p+K <sup>+</sup>                           | 6          |
| 195 | 2.943    | p+p+π <sup>-</sup> +K <sup>+</sup> +K <sup>0</sup>               |            |
| 299 | 2.415    | Λ(1405)+p+K <sup>+</sup>                                         | 25         |
| 300 | 2.412    | ррК⁻+К+                                                          | 61         |

#### signal on the "physics background", $p\Lambda K^+$ dalitz decay

Ken Suzuki

## Background Suppression



Channels which can have same event topology as signal





| chi             | threshol | reaction                                                      | @Tp=3.0GeV    |  |
|-----------------|----------|---------------------------------------------------------------|---------------|--|
| 77              | 2.798    | <del>᠊᠋᠋ᡞ᠇<i>ᢑ</i>᠂</del> ᠋ᡣ <sup>᠅</sup> ᠇ᠬ <sup>᠅</sup> ᠇ᠬ᠊ | 2             |  |
| 79              | 2.382    | <del>^;</del>                                                 | <b>—</b>      |  |
| 83-             | 1.958    | <u> </u>                                                      | <del>96</del> |  |
| 84              | 1.582    | Λ+p+K <sup>+</sup>                                            | 339           |  |
| 97              | 2.592    | <del>Σ' φ π° π κ</del>                                        | 2             |  |
| <del>99</del>   | 2.185    | Ξ'+ρ+π+Κ                                                      | <del></del>   |  |
| 105             | 2.616    | <del>ᢄᡥ᠇᠋᠋᠋᠋᠋᠋᠋᠋᠋᠄᠇᠇᠄ᢞ</del> ᡟ                                | <b></b>       |  |
| 108             | 1.794    | <del>∑°÷p÷K</del> i                                           | <u>+23</u>    |  |
| 120             | 2.348    | <del>Σ(1385) +p+K</del>                                       |               |  |
| 195             | 2.943    | <del>ρ+ρ+π+Κ'+Κ</del> ⁰                                       |               |  |
| 2 <del>99</del> | 2.415    | <del>^(1405)+p+K</del> ⁺                                      | <u> </u>      |  |
| 300             | 2.412    | ррК <sup>-</sup> +К <sup>+</sup>                              | 61            |  |

signal on the "physics background",  $p\Lambda K^+$  dalitz decay

Ken Suzuki

### FOPI Apparatus

Österreichische Akademie der Wissenschaften

#### Fixed target experiment designed for heavy-ion-collision study



Magnetic Field: 0.6T Trigger Rate: 200~500Hz Particle/event: ~100

| θ <sub>lab</sub> | Tracking | TOF         |
|------------------|----------|-------------|
| 35-150           | CDC      | Sci. Barrel |
| 7.5-35           | Helitron | PLAWA       |
| 1.2-7.5          |          | ZD          |

Ken Suzuki

11.06.2010

#### FOPI performance: charged particle



10

0

10

10

-5

ex. particle id ex. event monitor Ni+Ni @ 1.93 AGeV (2003) 9.5 log(dE/dx) [ a.u. ] x-y plane 9 Event 104904 sqrt scaling( 60895 Run 1 8.5 8 7.5 He 7 6.5 6 -1 1 CHILL III



Ken Suzuki

TD DD

11.06.2010

CHIT 2012 CHI1

#### Experimental Setup at FOPI





- September 2009 (effectively ~2wks data taking)
- *Tp=3.1 GeV, 10-15 M /spill, spill cycle=10 s*
- *LH*<sub>2</sub> target (2 cm = ~0.4 %)
- ~80 M "Lambda-Trigger" events



Ken Suzuki



## (DISTO) Analysis Strategy



- 1. Selection of exclusive  $p+p \rightarrow p+\Lambda+K^+$  final state events (Ordinary+Exotic process)
- 2. "Acceptance Correction"
- 3. Look for a binary process:  $p+p \rightarrow K^-pp^+ + K^+$  (Exotic Process) as a deviation from the ordinary process,
- 4. Analyze the binary process
  - 1. Consistency check with production ch. (MM) and decay ch. (Minv)
  - 2. Kinematics
  - 3. Further cross checks (high momentum transfer)
- 5. Interpretation

Ken Suzuki

#### Comparison: FOPI DISTO

| ø2.4r | n x 3.3m          | Innere Plastikwand         I | Hodoscope<br>MWPC2<br>MWPC1<br>Fibers2<br>Target<br>Fibers1 | Österneichische Akademi<br>der Wissenschaften |
|-------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|
|       | Beam Energy       | 3.1 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.15, 2.5, 2.85 G                                           | eV                                            |
|       | Prim. Det. Design | Heavy-Ion-Collision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | hyperon spin phys                                           | sics                                          |
|       | Magnet            | Cylindrical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dipole                                                      |                                               |
|       | ∧ Trigger         | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes                                                         |                                               |
|       | Direct K± ID      | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No                                                          |                                               |
|       | Venue             | GSI, Darmstadt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Saclay, Paris                                               |                                               |
|       | Statistics        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 177k p <b>N</b> K event                                     | ts                                            |

Ken Suzuki R. Kutsche Ph.D.Thesis 11.06.2010

### Acceptance Correction



#### UNC: Acceptance non-corrected data

SIM: "ordinary"  $pp \rightarrow p\Lambda K$  events with flat phase space assumption

DEV: UNC/SIM (bin by bin), deviation from flat distribution

Powerful technique which works only with this specific case

Valid if the event sample is only  $p\Lambda K$  final state. Purity~a few %

### $cos\theta_{cm} vs P_{cm}$





Ken Suzuki

### $cos\theta_{cm} vs P_{cm}$





Ken Suzuki







#### MM / Minv spectrum



X component consistent in both cases,

- symmetric shape
- background description still primitive

Ken Suzuki



• Binding energy and width does not much with any theory



#### Beam Energy Dependence



## Outlook and Perspectives



- Exclusive measurement of pp→p∧K<sup>+</sup> reaction, to the question of an existence of kaonic nuclear states at FOPI and DISTO
- DISTO sees pp→K<sup>+</sup>X process which fulfills a certain (but not full) picture of K<sup>-</sup>pp production ("Indication": PRL104 2010 132502)
  - Mid. July DISTO analysis week
- FOPI analysis in progress
- Energy dependence study: lower (less/no knucl.) energy (DISTO, COSY?), higher (<u>more optimal</u>) energy (FOPI).

Ken Suzuki

#### Collaboration

#### **FOPI** Collaboration



Anton Andronic<sup>4</sup>, Valerie Barret<sup>3</sup>, Zoran Basrak<sup>16</sup>, Nicole Bastid<sup>3</sup>, Mohammed Lotfi Benabderrahmane<sup>6</sup>, Martin Berger<sup>10</sup>, Paul Bühler<sup>14</sup>, Roman Čaplar<sup>16</sup>, Ivana Carević<sup>12</sup>, Michael Cargnelli<sup>14</sup>, Mircea Ciobanu<sup>6</sup>, Philippe Crochet<sup>3</sup>, Ingo Deppner<sup>6</sup>, Pascal Dupieux<sup>3</sup>, Mile Dželalija<sup>12</sup>, Laura Fabbietti<sup>10</sup>, Piotr Gasik<sup>15</sup>, Igor Gašparić<sup>16</sup>, Yuri Grishkin<sup>8</sup>, Olaf Hartmann<sup>14</sup>, Norbert Herrmann<sup>6</sup>, Klaus Dieter Hildenbrand<sup>4</sup>, Byungsik Hong<sup>11</sup>, Tae Im Kang<sup>11</sup>, Jozsef Kecskemeti<sup>2</sup>, Young Jin Kim<sup>4</sup>, Paul Kienle<sup>14</sup>, Marek Kirejczyk<sup>15</sup>, Mladen Kiš<sup>4</sup>, Milorad Korolija<sup>14</sup>, Roland Kotte<sup>5</sup>, Piotr Koczoń<sup>4</sup>, Alexander Lebedev<sup>8</sup>, Yvonne Leifels<sup>4</sup>, Xavier Lopez<sup>3</sup>, Vladislav Manko<sup>9</sup>, Johann Marton<sup>14</sup>, Tomasz Matulewicz<sup>15</sup>, Markus Merschmeyer<sup>6</sup>, Robert Münzer<sup>10</sup>, Mihail Petrovici<sup>1</sup>, Krzysztof Piasecki<sup>6</sup>, Dominik Pleiner<sup>10</sup>, Fouad Rami<sup>13</sup>, Andreas Reischl<sup>6</sup>, Willibrord Reisdorf<sup>4</sup>, Min Sang Ryu<sup>11</sup>, M. Schaffhauser<sup>14</sup>, Andreas Schüttauf<sup>4</sup>, Zoltan Seres<sup>2</sup>, Brunon Sikora<sup>15</sup>, Jakob Wierzbowski<sup>10</sup>, Eberhard Widmann<sup>14</sup>, Krysztof Wisńiewski<sup>15</sup>, Zhi Gang Xiao<sup>7</sup>, Hu Shang Xu<sup>7</sup>, Igor Yushmanov<sup>9</sup>, Xue Ying Zhang<sup>7</sup>, Alexander Zhilin<sup>8</sup> und Johann Zmeskal<sup>14</sup>

<sup>1</sup>NIPNE Bucharest, <sup>2</sup>KFKI RMKI Budapest, <sup>3</sup>LPC Clermont-Ferrand, <sup>4</sup>GSI Darmstadt, <sup>5</sup>FZ Rossendorf/Dresden, <sup>6</sup>Universität Heidelberg, <sup>7</sup>IMP Lanzhou, <sup>8</sup>ITEP Moscow, <sup>9</sup>KI Moscow, <sup>10</sup>Technische Universität München, <sup>11</sup>Korea University Seoul, <sup>12</sup>University of Split, <sup>13</sup>IReS Strasbourg, <sup>14</sup>Stefan-Meyer-Institut, Austrian Academy of Sciences Vienna, <sup>15</sup>Warsaw University, <sup>16</sup>RBI Zagreb

#### **DISTO** Collaboration

T. Yamazaki<sup>1,2</sup>, M. Maggiora<sup>3</sup>, P. Kienle<sup>4,5</sup>, K. Suzuki<sup>4</sup>, A. Amoroso<sup>3</sup>, M. Alexeev<sup>3</sup>, F. Balestra<sup>3</sup>, Y. Bedfer<sup>6</sup>, R. Bertini<sup>3,6</sup>, L. C. Bland<sup>7</sup>, A. Brenschede<sup>8</sup>, F. Brochard<sup>6</sup>, M. P. Bussa<sup>3</sup>, Seonho Choi<sup>7</sup>, M. L. Colantoni<sup>3</sup>, R. Dressler<sup>9</sup>, M. Dzemidzic<sup>7</sup>, J.-Cl. Faivre<sup>6</sup>, L. Ferrero<sup>3</sup>, J. Foryciarz<sup>10,11</sup>, I. Fröhlich<sup>8</sup>, V. Frolov<sup>9</sup>, R. Garfagnini<sup>3</sup>, A. Grasso<sup>3</sup>, S. Heinz<sup>3,6</sup>, W. W. Jacobs<sup>7</sup>, W. Kühn<sup>8</sup>, A. Maggiora<sup>3</sup>, D. Panzieri<sup>12</sup>, H.-W. Pfaff<sup>8</sup>, G. Pontecorvo<sup>3,9</sup>, A. Popov<sup>9</sup>, J. Ritman<sup>8</sup>, P. Salabura<sup>10</sup>, S. Sosio<sup>3</sup>, V. Tchalyshev<sup>9</sup> and S. E. Vigdor<sup>7</sup>

<sup>1</sup>University of Tokyo, <sup>2</sup>RIKEN, <sup>3</sup>INFN, Torino, <sup>4</sup>Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, Vienna, <sup>5</sup>Excellence Cluster Universe, Technische Universität München, <sup>6</sup>Saclay, <sup>7</sup>Indiana University, <sup>8</sup>Universität Gießen, <sup>9</sup>Forschungszentrum Rossendorf, <sup>10</sup>Jagellonian University, Kraków, <sup>11</sup>H. Niewodniczanski Institute of Nuclear Physics, Kraków, <sup>12</sup>Universita` del Piemonte Orientale and INFN, Torino, Italy

Ken Suzuki

11.06.2010

# **Spare Slides**

DISTO Data





# DISTO Experiment



#### DISTO @ Saturne: polarised proton beam up to T = 2.9 Gev



- S170 magnet (< 14.7 KGauss,  $\Delta \theta = \pm 120^{\circ}$ ,  $\Delta \phi = \pm 20^{\circ}$ )
- semi-cylindrical 1mm-square scintillating fibers triplets inside magnet
- MWPC planar triplets outside magnet
- scintillator hodoscopes vertically and horizontally segmented
- scintillator hodoscopes as polarimeter slabs
- doped water Cerenkov counters

M. Maggiora, HYP-X at Tokai, Japan 2009

Ken Suzuki



Hyperon production @ DISTO

| <b>UAW</b>                                     |
|------------------------------------------------|
| Osterreichische Akademie<br>der Wissenschaften |

| Reaction                                                                             | $T_{\it thr}$ | Detected Prongs                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\vec{p} \ p \to p \ K^+ \vec{\Lambda}$                                              | 1.58          | $p K^+ (p \pi^-)$                                                                                                                                                                                                         |
| $\vec{p} \ p \to p \ K^+ \vec{\Sigma}^0$ $\vec{\Sigma}^0 \to \vec{\Lambda} \ \gamma$ | 1.79          | $p K^+(p \pi^-)$                                                                                                                                                                                                          |
| $\vec{p} p \rightarrow p K^+ \Sigma^{*0}_{(1385)}$                                   | 2.34          | $p K^{+}(p \pi^{-}) \text{ from } \Lambda \pi^{0} \text{ or } \Sigma^{0} \pi^{0}$ $p K^{+} \pi^{+}(\pi^{-}) \text{ from } \Sigma^{-} \pi^{+}$ $p K^{+} \pi^{-}(p) \text{ or } (\pi^{+}) \text{ from } \Sigma^{+} \pi^{-}$ |
| $\vec{p} p \rightarrow p K^+ \Lambda^*_{(1405)}$                                     | 2.40          | $p K^{+} \pi^{+}(\pi^{-}) \text{ from } \Sigma^{-} \pi^{+}$ $p K^{+}(p \pi^{-}) \text{ from } \Sigma^{0} \pi^{0}$ $p K^{+} \pi^{-}(p) \text{ or } (\pi^{+}) \text{ from } \Sigma^{+} \pi^{-}$                             |

M. Maggiora, HYP-X at Tokai, Japan 2009

Ken Suzuki



Hyperon production @ DISTO

| Österreichische Akademie<br>der Wissenschaften |
|------------------------------------------------|

| bda Gate on $\Delta M_{pK_{thr}}$                                                                |      | Detected Prongs                                                                                                                                                                                                           |  |
|--------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $\vec{p} \ p \to p \ K^+ \vec{\Lambda}$                                                          | 1.58 | $p K^+(p \pi^-)$                                                                                                                                                                                                          |  |
| $\vec{p} \ p \to p \ K^+ \overset{\circ}{\Sigma}^0 \\ \vec{\Sigma}^0 \to \vec{\Lambda} \ \gamma$ | 1.79 | $p K^+ (p \pi^-)$                                                                                                                                                                                                         |  |
| $\vec{p} p \rightarrow p K^+ \Sigma^{*0}_{(1385)}$                                               | 2.34 | $p K^{+}(p \pi^{-}) \text{ from } \Lambda \pi^{0} \text{ or } \Sigma^{0} \pi^{0}$ $p K^{+} \pi^{+}(\pi^{-}) \text{ from } \Sigma^{-} \pi^{+}$ $p K^{+} \pi^{-}(p) \text{ or } (\pi^{+}) \text{ from } \Sigma^{+} \pi^{-}$ |  |
| $\vec{p} \ p \rightarrow p \ K^+ \Lambda^*_{(1405)}$                                             | 2.40 | $p K^{+} \pi^{+} (\pi^{-}) \text{ from } \Sigma^{-} \pi^{+}$ $p K^{+} (p \pi^{-}) \text{ from } \Sigma^{0} \pi^{0}$ $p K^{+} \pi^{-} (p) \text{ or } (\pi^{+}) \text{ from } \Sigma^{+} \pi^{-}$                          |  |

M. Maggiora, HYP-X at Tokai, Japan 2009

Ken Suzuki

11.06.2010