

S.Uehara (KEK)

MESON2010, Jagiellonian University, Krakow June 10-15, 2010

Outline

 New charmonium(-like) states X(3872), Z(4430)
X(3940), Y(3940), Z(3930)
Y(4140), X(4350)

- Possible $b\bar{b}$ exotic state Y_b
- Properties of η_c , η_b , Y(1D)

List of new mesons

recently found at B-factory Experiments etc.

(including some found by CLEOc and CDF)

Charmonium(-like) particles

 $\eta_c(2S), Z(3930)=\chi_{c2}(2P)$ // ordinary charmonium states X(3872), Y(3940), Z(4430), Z(4058), Z(4258), Y(4260), Y(4320), Y(4008), Y(4664), Y(4140), X(3915), X(4350) ... // decay into a charmonium X(3940), X(4160), X(4630)

D_(S)-mesons

 $D_{0}^{*}(2308), D_{1}^{'}(2427), D_{sJ}^{'}(2700), D_{s0}^{*}(2317), D_{s1}^{'}(2460), D_{s}^{'}(2690), D_{s}^{'}(2860), \dots$

Bottomonium(-like)

 η_b , $Y_J(1D)$, Y_b Light-quark mesons, baryons are not included in this table.

Hidden $c\bar{c}$ or $b\bar{b}$: Production at B-factory Experiments

X(3872)

X(3872) and its properties

First observation @ BELLE $B^- \rightarrow X(3872)K^ X(3872) \rightarrow \pi^+\pi^- J/\psi$

Belle, hep-ex/0505037

$X(3872) \rightarrow \gamma J/\psi$ seen C-even

 $\pi\pi$ mass distribution – ρ like

 $J^P = 1^+$ and 2^- are favored

MESON2010, June, 2010, S.Uehara

X(3872) production modes: Decay of B⁰: BF ratios and no-mass splitting

Doublet X? (from a diquark and anti-diquark model)

 $B^{\pm} {\rightarrow} X(3872) K^{\pm} \text{ and } B^{0} {\rightarrow} X(3872) K^{0}_{\text{S}}$

X(3872) decay modes: $\psi^{(\prime)}\gamma$

$\psi^{(\prime)}\gamma$ modes from Belle

 $\mathcal{B}(B^{\pm} \to X(3872)K^{\pm}) \times \mathcal{B}(X(3872) \to \psi(2S)\gamma) < 3.4 \times 10^{-6} \quad (90\% \text{CL})$ $\mathcal{B}(\psi(2S)\gamma)/\mathcal{B}(J/\psi\gamma) < 2.1 \quad (90\% \text{CL})$ \mathbb{O} Not in agreement with BaBar's evidence BaBar: BF × BF = (9.5 ± 2.7 ± 0.6) × 10^{-6}

$\omega J/\psi$ mode

 $M = 3872.9_{-0.4 - 0.5}^{+0.6 + 0.4} \text{ MeV/c}^2, \Gamma = 3.9_{-1.4 - 1.1}^{+2.8 + 0.2} \text{ MeV},$ BR(B⁰ \rightarrow XK)×BR(X $\rightarrow \overline{D}^{*0} D^0$) = (0.80 ±0.20 ±0.10)×10⁻⁴ No significant mass difference from the X(3872) in J/ $\psi \pi^+\pi^-$ mode

MESON2010, June, 2010, S.Uehara

Z(4430)

Z(4430)⁺: Charged charmonium-like state

Belle's Dalitz Analysis

K*s included in the analysis: к, K*(892), K*(1410), K*₀(1430), K*₂(1430), K*(1680)

605 fb⁻¹ Belle, PRD 80,031104 (R)(2009) Belle confirms the original result of Z(4430) with 6.4σ

X(3940) Y(3940) Z(3930)

The X,Y,Z near 3940 MeV

X(3940) in Double charmonium production

17

 $Y(3940) \rightarrow \omega J/\psi$ confirmed

Y(4140) X(4350)

$Y(4140) \rightarrow \phi J/\psi$

CDF observed new charmonium-like particle

Wai Upsilon Y_b and Y(5S)

Much larger than

 $\Gamma(Y(4S) \rightarrow Y(nS)\pi\pi) \sim O(1keV)$

Y (5S) peak from the Belle measurement mass= $10879 \pm 3 \text{ MeV/c}^2$ width = 46^{+9}_{-7} MeV

A possible explanation: another state Y_b decaying $\rightarrow Y(nS)\pi\pi$

Energy scan of $e^+e^- \rightarrow Y$ (nS) $\pi^+\pi^-$

η_c , η_b and Y(1D)

BABAR : $\Gamma(\eta_c \rightarrow \gamma \gamma) B(\eta_c \rightarrow K\overline{K}\pi) = 0.374 \pm 0.009 \pm 0.031 \text{ keV}$ PDG: 0.44±0.04 keV, CLEO: 0.407±0.022±0.028 keV

MESON2010, June, 2010, S.Uehara

Discovery of η_b state

Combined: Hyperfine mass splitting (1S) = $69.5 \pm 3.2 \text{ MeV/c}^2$

Observation of Y (1D) $\rightarrow \pi^+\pi^-$ Y (1S)

Summary

Recent updates and New Topics:

X(3872): No mass splitting, production / decay modes $\rightarrow \psi(2S)\gamma$ seen at BaBar, not seen at Belle $\rightarrow \omega J/\psi$ confirmed Z(4430): No evidence from BaBar Confirmation with the Dalitz analysis by Belle Y(3940): Updated analysis Z(3930): confirmed : Z(3930) = $\chi_{c2}(2P)$

CDF's new particle $Y(4140) \rightarrow J/\psi\phi$, not seen at Belle New structures seen in two-photon processes, $\gamma\gamma \rightarrow J/\psi\omega$ and $J/\psi\phi$ Y(5S) and Y_b , an exotic candidate with similar masses ?

Precise measurement of the η_c mass and width in $\gamma\gamma$ New decay mode Y(1D) \rightarrow Y(1S) $\pi^+\pi^-$ found Backup slides

KEKB Accelerator and Belle Detector

• Asymmetric e⁻ e⁺ collider 8 GeV e- (HER) x 3.5 GeV e+ (LER) $\sqrt{s=10.58 \text{ GeV}} \Leftrightarrow \Upsilon(4S)$ Beam crossing angle: 22mrad Continuous injection •Luminosity L_{max}=2.1x10³⁴ cm⁻²s⁻¹ $\int Ldt \sim 1000 \, fb^{-1}$ (Jun.2010) Aerogel Cherenkov cnt. SC solenoid n=1.015~1.030 1.5T 5.5 GeV e+ CsI(Tl) $16X_0$ **TOF** conter-8 GeV e Central Drift Chamber small cell +He/C₂H₅ Si vtx. det. μ / K_I detection 3(4) lyr. DSSD 14/15 lvr. RPC+Fe

High momentum/energy resolutions CDC+Solenoid, CsI Vertex measurement – Si strips Particle identification TOF, Si-aerogel, CDC-dE/dx, RPC for K_L/muon

BBCB-WS, Nov., 2007, S.Uehara, Belle

BaBar at PEP-II

 $e^+e^- \rightarrow Y(4S)$ and nearby continuum: E_{cms} ~ 10.6 GeV 530 fb⁻¹ in total **ElectroMagnetic** Calorimeter 1.5 T solenoid e⁺(3.1 GeV) Čerenkov Detector (DIRC) e⁻ (9 GeV) Drift CHamber Silicon Vertex Tracker Instrumented Flux Return

0000

MESON2010, June, 2010, S.Uehara

List of new particles of heavy quarkonia

Ordinary-like charmonium $\eta_c(2S)$ Z(3930)= $\chi_{c2}(2P)$ No clear charmonium assignment Double charmonium production X(3940) X(4160) Decays with $\psi(\text{or }\psi')$ X(3872) Y(4008) Y(4260) Y(4320) Y(3940) Y(4664) Y(4140) and more ...? Decays with $\psi'(\chi_{c1})$ and Charged $Z(4430)^+$ $Z_1(4058)^+$ $Z_{2}(4258)^{+}$

Bottomonium(like) states η_b , Y(1D), and Y_b

0000

MESON2010, June, 2010, S.Uehara

C=+ is established for X(3872)

X(3872) → $\gamma J/\psi$ seen C-even (in contrast to non-obs. of $\gamma \chi_c$)

 $\Gamma(X \rightarrow \gamma J/\psi)/\Gamma(X \rightarrow \pi^+\pi^- J/\psi) = 0.14 \pm 0.15$ A small radiative width –unlikely for χ'_c

Even parity is favored from the $\pi\pi$ invariant mass distribution (ρ -type $\pi\pi$) Indication of isospin non-conservation Angular analysis of $l^+l^-\pi^+\pi^ J^P = 1^+$ is favored (Belle/CDF)

Spin-parity of X(3872); 0⁺, 0⁻ or 1⁺?

Spin-parity of X(3872); 0⁺, 0⁻ or 1⁺?

New production mode

 $\begin{array}{l} BF(B^{0} \rightarrow X(K^{+} \pi^{-})_{NR}) BF(X \rightarrow J/\psi \pi^{+}\pi^{-}) = (8.1 \pm 2.0 \ ^{+1.1}) \times 10^{-6} \\ BF(B^{0} \rightarrow X \ K^{*0}) BF(X \rightarrow J/\psi \pi^{+}\pi^{-}) < 3.4 \times 10^{-6} \ (90\% \ CL) \\ K^{*} \text{ is not significant, in contrast to } B^{0} \rightarrow (J/\psi, \psi') K^{*} \text{ decays etc.} \end{array}$

MESON2010, June, 2010, S.Uehara

Z(4430)⁺: Charged charmonium-like state

Belle's Dalitz Analysis

Belle's Dalitz Analysis

Observation of $D^0\overline{D}^0\pi^0$ threshold peak

Study of $e^+e^- \rightarrow \gamma_{ISR} \Lambda$

PRL 101, 172001(2008)

Y(4320) and Y(4664), and X(4630) in $\Lambda c^{+}\Lambda c^{-}$

ISR – $D^{(*)}\overline{D^{(*)}}$: from ψ states, and Y states?

fixed masses&widths from PDG (due to limited statistics,

ISR – $D^*D^{(*)}(\pi)$ measurements from Belle

Systematic errors ≈ statistical errors

⊚D^{*}D^{*}

●DD^{*}

complicated shape of cross section

•clear dip at M(D*D*) ~ 4260 GeV (similar to inclusive R)

broad peak at threshold (shifted relative to 4040 GeV)

$$\begin{split} \mathcal{B}(Y(4260) \to D^0 D^{*-} \pi^+) / \mathcal{B}(Y(4260) \to \pi^+ \pi^- J/\psi) \\ < 9 \ (@90\% \text{CL}) \end{split}$$

No evidence of open-charm decay of these Y particles found so far.

MESON2010, June, 2010, S.Uehara

ss sector; $e^+e^- \rightarrow Y(2175) \rightarrow \phi \pi^+ \pi^-$

