MESON 2010

Probing nucleon structure with meson production in Hall C

Stephen Wood and Hamlet Mkrtchyan

- Semi-Inclusive Deep Inelastic Scattering
- Exclusive Meson
 Production
- Other applications of meson production

Meson electroproduction in SIDIS

 $e + N \rightarrow e' + \pi + X$

- At high energies the SIDIS process factorizes into a hard virtual photonquark interaction and a subsequent quark hadronization.
- The cross section can be decomposed as a product of quark distribution functions and fragmentation function
- A consequence of this factorization is independence of the hardscattering process on z and hadronization on quark momentum x

Quark-Hadron Duality

- The phenomena of quark-hadron duality in inclusive (e,e') scattering is well established (Bloom-Gilman, 1970's), and confirmed at JLab at low Q² and for the neutron.
- JLab Meson Duality experiment: Verify, the existence of quarkhadron duality phenomenon in semi-inclusive pion electroproduction and low-energy factorization.

Hall C Basic Experimental Setup

HMS $\pi^+ \pi^-$

High Momentum Spectrometer: Pmax =7.4 GeV/c ΔP= ±10%

Short Orbit Spectrometer: Pmax=1.74 GeV/c ΔP= ±20%

- -- Momentum resolution: < 0.1%
- -- Angular resolution: ~2.0 mrad
 - e, π, K, p particle ID

SOS e⁻

Overview of Meson Duality Experiment

Coincidence measurement
 HMS + SOS

- z-dependence (z=0.3-1.0) at x=0.3
- x-dependence (x=0.25-0.6) at z=0.55
- θ_{π} (0°-8°) at fixed z=0.55 and x=0.3 (P_t scan)

 $\begin{array}{ccc} \mathbf{e} + \mathbf{p} & \longrightarrow & \mathbf{e}^{*} + \pi^{\pm} + \mathbf{X} \\ \mathbf{e} + \mathbf{D} & \longrightarrow & \mathbf{e}^{*} + \pi^{\pm} + \mathbf{X} \end{array}$

- HMS to detect pions (π or π +)
- SOS to detect electrons
- 4 cm LH2 and LD2 targets
- AI (dummy) to estimate cryo target wall contribution
- Beam energy 5.5 GeV
- Beam current 20-70 µA

Semi-inclusive π^{\pm} electroproduction to the region $M_x^2 > 1.5$ GeV

Meson Duality: Experimental cross-section

- At high energy the meson yield arises in term of a fit to the $\sigma_{SIDIS} = \sigma_{DIS} \cdot \sum e_i^2 [q_i(x,Q^2)D_i(z)] \cdot be^{-bp}T^2 \{1+A\cos(\phi)+B\cos(2\phi)\}$
- At $\theta_{\pi q} \sim 0$ (pion along the virtual photon direction) $\sim 2\pi$ coverage in ϕ . The ϕ -dependence effectively integrated out (for xscan and zscan)

 $z = E_{\pi}/\nu$

• Cross section modelled using high-energy factorization assuming no φ terms: $\sigma_{SIDIS} = \sigma_{DIS} \cdot \sum e_i^2 [q_i(x,Q^2)D_i(z)] \cdot be^{-bp}T^2$

Jefferson Lab

Used for q(x,Q²) and D[±](z) parameterization from high energies
 Will these high-energy assumptions describe data ?

z-dependence of cross section

 $\sigma \sim f(x,Q^2) \cdot D(z)$

Good agreement between data and high energy prediction for Z<0.65

> (using CTEQ5M for PDFs and Binnewies for Fragmentation)

 Large excess at Z > 0.8 with respect to the prediction reflects the N–Δ transition

 $(m_{\Delta}^{2} \approx 1.5 \text{ GeV}^{2})$ $W'^{2} = m_{p}^{2} + Q^{2} \cdot (\frac{1}{\chi} - 1) \cdot (1 - z) \rightarrow W'^{2} \equiv M_{x}^{2} \sim (1 - z)$

Within our kinematics ($P_t \sim 0$, x=0.3, Q²=2.30 GeV²), M_x^2 directly related to z:

Navasardyan et al., Phys. Rev. Lett. 98, (2007)

D⁻/D⁺ from Deuteron π^+ to π^- ratio

$$\sigma_{d}^{\pi^{+}} \propto (4D^{+} + D^{-})(u + d)$$

$$\sigma_{d}^{\pi^{-}} \propto (4D^{-} + D^{+})(u + d)$$

$$\frac{\sigma_{d}^{\pi^{+}}}{\sigma_{d}^{\pi^{-}}} = \frac{4D^{+} + D^{-}}{4D^{-} + D^{+}}$$

D'/D+ = (4 - r) / (4r - 1)
where r = $\sigma_{d}(\pi^{+})/\sigma_{d}(\pi^{-})$

 $z=E_{\pi}/v$

- Near-independence from x, as expected
- Results agree with HERMES & EMC
- The resonant contribution at z>0.8 cancel out ! (Close & Isgur)

P_t in semi-inclusive pion electroproduction

- Final transverse momentum of pion P_t arises from convolving the struck quark transverse momentum k_t with transverse momentum generated during fragmentation process p_t
- Assume the width quark and fragmentation functions are Gaussian in k_t and p_t , and $\langle P_t^2 \rangle = \langle k_t^2 \rangle + \langle p_t^2 \rangle$
- Introduce separate width for u and d quarks, and separate width for D⁺ and D⁻
- $\sigma_{\text{SIDIS}} \sim \sigma_{\text{DIS}} (dN/dz) b exp(-bP_t^2)$
- Assume: $b_{u}^{\pm} = (z^{2}\mu_{u}^{2} + \mu_{\pm}^{2})^{-1}$ and $b_{d}^{\pm} = (z^{2}\mu_{d}^{2} + \mu_{\pm}^{2})^{-1}$

The P_t²-dependence of the cross-sections

 $b \rightarrow b_{q}^{\pm} (b_{u}^{\pm} \& b_{d}^{\pm}), \text{ and } b_{q}^{\pm} = (z^{2} \mu_{q}^{2} + \mu_{\pm}^{2})^{-1}$

 $\sigma_{p}^{\pi+} = C[4c_{1} \cdot exp(-b_{u}^{+}P_{t}^{2}) + (d/u)(D^{-}/D^{+})c_{2} \cdot exp(-b_{d}^{-}P_{t}^{2})]$ $\sigma_{p}^{\pi-} = C[4(D^{-}/D^{+})c_{3} \cdot exp(-b_{u}^{-}P_{t}^{2}) + (d/u)c_{4} \cdot exp(-b_{d}^{+}P_{t}^{2})]$ $\sigma_{n}^{\pi+} = C[4(d/u)c_{4} \cdot exp(-b_{d}^{+}P_{t}^{2}) + (D^{-}/D^{+})c_{3} \cdot exp(-b_{u}^{-}P_{t}^{2})]$ $\sigma_{n}^{\pi-} = C[4(d/u)(D^{-}/D^{+})c_{2} \cdot exp(-b_{d}^{-}P_{t}^{2}) + c_{4} \cdot exp(-b_{u}^{+}P_{t}^{2})]$

Fit values:

- $D^{-}/D^{+} = 0.42 \pm 0.01;$ $d/u = 0.37 \pm 0.02$
- $\mu_u^2 = 0.09 \pm 0.03 \text{ GeV}^2$ $\mu_d^2 = 0.0 \pm 0.05 \text{ GeV}^2$
- $\mu_{+}^2 = 0.18 \pm 0.03 \text{ GeV}^2$ $\mu_{-}^2 = 0.14 \pm 0.03 \text{ GeV}^2$
- Fit results for D⁻/D⁺ agree with HERMES data , and d/u ratio with LO GRV
- Fit tends to larger k_t width for d quarks than for u (as di-quark model)
- Fragmentation width μ_{+} and μ_{-} are similar (as predicted by Anselmino)

H. Mkrtchyan, P. Bosted et al., Phys. Lett. B665, 20 (2008)

TMD of SIDIS at 12 GeV E12-09-017

Map transverse momentum dependence of $(e,e'\pi)$ over range:

 $0.2 < x < 0.5, 2 < Q^2 < 5 \text{ GeV}^2$, $0.3 < z < 0.5 \text{ and } P_t < 0.5 \text{ GeV}$

Combine with CLAS12 data to constrain transverse widths of u/d quarks and fragmentation functions

Obtain some statistics on transverse momentum dependence of (e,e'K)

Charge Symmetry Violation Test with SIDIS at 12 GeV

Charge Symmetry:

 $m_p \sim m_n$

Energy levels mirror nuclei

p vs n scattering lengths

Charge Symmetry is assumed in parton distribution functions:

 $U^p(x) = d^n(x)$

If Charge Symmetry, then $d(e,e'\pi^+)/d(e,e'\pi^-)$ depends on fragmentation functions not PDFs

Precision $N\pi^+/N\pi^-$ ratio gives $C(x) = \delta d(x) - \delta u(x)$ where:

 $\delta u(x) = u^p(x) - d^n(x), \ \delta d(x) = d^p(x) - u^n(x)$

Experiment E12-09-002:

Measure $d(e,e'\pi^+)/d(e,e'\pi^-)$ to 1% over range of kinematics

 $p(e,e'\pi^+)$, $p(e,e'\pi^-)$ for further factorization tests

Requires careful control of $\pi^+ \pi^-$ detection efficiency, radiative corrections

Charge Symmetry Violation Projections

Scaling of exclusive pion electroproduction cross sections

- At sufficiently high Q² (> 10 GeV²), meson electroproduction should factorize into hard (quark-knockout) and soft (nucleon GPD and meson formation).
- To leading order σ_L , should scale as $1/Q^6$ and σ_T as $1/Q^8$. (At fixed x and t).
- 12 GeV experiment (E12-07-105) will extend range of scaling tests and test dominance of σ_L . (Q² \rightarrow 9 GeV²)

6 GeV Hall C Data

Horn et al., Phys. Rev. C. 78, 058201 (2008)

L-T separated Kaon Electroproduction at 5-11 GeV

E12-09-011: T. Horn (CUA), G. Huber (U of Regina), P. Markowitz (FIU)

Pion Transparency in Nuclei: D. Dutta, R. Ent , K. Garrow

Larson, Miller and Strikman, PRC 74, 018201 (2006) Cosyn, Martinez, Ryckebusch and Overmeire., PRC 74, 062201R (2006) Qian et al., Phys. Rev. C 81, 055209 (2010)

Onset of Color Transparency a precondition For factorization.

Kaon Transparency in Nuclei

A(e,e' π ⁺) transparency experiment data contains some A(e,e'K⁺) events

Analysis underway to extract Kaon transparencytra

Pion/Proton Transparency at 12 GeV

A(e,e'p) at 12 GeV (projected results)

A(e,e'π⁺) at 12 GeV (projected results)

E12-06-107

Baryon Production at high Q²

Jefferson Lab

Hypernuclei

E01-011 (Tohoku U, Hampton U, FIU, JLab) A(e,e'K+) $_{\Lambda}$ A(Z-1)

Access unique hypernuclei ~400 keV FWHM resolution 1^{st} observation of ${}^{28}_{\Lambda}AI$ and ${}^{7}_{\Lambda}He$

Hall C after 12 GeV Upgrade

- Beam Energy: 2 11 GeV/c
- Super High Momentum Spectrometer (SHMS)
 - Horizontal Bender, 3 Quads, Dipole
 - P \rightarrow 11 GeV/c
 - $dP/P 0.5 1.0x10^{-3}$
 - Acceptance: 5msr, 30%
 - $5.5^{\circ} < \theta < 40^{\circ}$
- High Momentum Spectrometer (HMS)
 - P \rightarrow 7.5 GeV/c
 - dP/P 0.5 1.0x10⁻³
 - Acceptance: 6.5msr, 18%
 - $10.5^{\circ} < \theta < 90^{\circ}$
- Minimum opening angle: 17°
- Well shielded detector huts

- Ideal facility for:
 - Rosenbluth (L/T) separations
 - Exclusive reactions
 - Low cross sections (neutrino level)

Summary

- Exploratory Meson Duality study will continue with 12 GeV SIDIS measurements:
 - Rosenbluth separation of SIDIS (σ_L/σ_T)
 - Transverse momentum
 - Charge Symmetry Violation of PDFs
- 12 GeV exclusive meson production scaling tests and CT
- Other applications of meson production
 - Hypernuclei
 - Baryon production
 - Sub-threshold J/ Ψ production in nuclei
 - Pion Form Factor
 - π^0 photo-production

