Progress on Neutron-Target Multipoles above 1 GeV

Igor Strakovsky^(a), Wei Chen^(b), Haiyan Gao^(b), William Briscoe^(a), Dipangkar Dutta^(c), Alexander Kudryavtsev^(d,a), Marco Mirazita^(e), Patrizia Rossi^(e), Stepan Stepanyan^(f), Vladimir Tarasov^(d), Ron Workman^(a)

^(a)The George Washington University, Washington, DC 20052, USA
^(b)Duke University, Durham, NC 27708, USA
^(c)Mississippi State University, Mississippi State, MS 39762, USA
^(d)Institute of Theoretical and Experimental Physics, Moscow, 117259 Russia
^(e)INFN, Laboratori Nazionali di Frascati, 00044 Frascati, Italy
^(f)Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA

We report a new extraction of nucleon resonance couplings using π^- photoprodution cross sections on the neutron. The world database for the process $\gamma n \to \pi^- p$ above 1 GeV has quadrupled with the addition of new differential cross sections from the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab in Hall B [1]. Differential cross sections from CLAS have been improved with a new final-state interaction determination using a diagrammatic technique taking into account the NN and πN final-state interaction amplitudes [2]. Resonance couplings have been extracted and compared to previous determinations. With the addition of these new cross sections, significant changes are seen in the high-energy behavior of the SAID cross sections and amplitudes [1].

- [1] W. Chen *et al*, to be submitted to Phys. Rev. C.
- [2] V. E. Tarasov, W. J. Briscoe, H. Gao, A. E. Kudryavtsev, and I. I. Strakovsky, Phys. Rev. C 84, 035203 (2011).

E-mail:

igor@gwu.edu