Exclusive Central Meson Production in Proton Antiproton Collisions at the Tevatron

Michael Albrow^(a), Artur Swiech^(b), Maria Zurek^(b)

 $^{(a)}$ Fermi National Accelerator Laboratory, Batavia, USA $^{(b)}$ Jagiellonian University, Krakow, Poland

It has been known since the days of the Intersecting Storage Rings, ISR, at CERN, that one can have pp interaction with more than one pomeron, \mathbb{P} , exchanged, known as double pomeron exchange. Exclusive hadronic systems, produced by double pomeron exchange, DPE, have the potential of opening a rich new window on hadron spectroscopy and diffraction mechanism.

We have studied events of the type $p + \bar{p} \to p + X + \bar{p}$ where X is a hadron pair (mostly $\pi^+\pi^-$) at $\sqrt{s} = 900$ GeV and 1960 GeV in the Collider Detector at Fermilab (CDF). The hadron pair is central, $\eta \approx 0$, and between two rapidity gaps $\Delta \eta \approx 4$. The dominant process is double pomeron exchange, DPE, with restrictions on the quantum numbers of X: Q = S = 0, C = +1, J = 0 or 2. The mass spectra, with about 500K candidate events assumed to be $\pi^+\pi^-$, shows strong resonant structures attributed to f_0 and f_2 states; their features change with $p_T(\pi^+\pi^-)$. We give the ratio of cross sections at $\sqrt{s} = 900$ GeV and 1960 GeV, and compare with Regge expectations. We estimate the background of K^+K^- events. After selecting high p_T pions we analyze central exclusive production of χ_c .

E-mail: maria.zurek@uj.edu.pl