

Westfälische Wilhelms-Universität Münster

Total and Differential Cross Section of the Reaction $p + d \rightarrow {}^{3}He + \eta$ at 49 and 60 MeV Excess Energy

Florian Bergmann

MESON 2012 – May/June 2012

Motivation

Total p + d \rightarrow ³He + η cross sections (only statistical errors):

- Enhancement within the first MeV excess energy caused by a strong final state interaction
- → Evidence for an η^3 He bound state
- Excitation function is well known near the production threshold

Florian Bergmann (WWU-Münster)

Motivation

- Larger uncertainties at higher excess energies
- Data from WASA/PROMICE and ANKE show a cross section
 plateau between 40 and 120 MeV
- 49 MeV GEM data point might indicate a cross section increase above this plateau
- A peak-like structure would be of high interest for studies of the reaction and the final state interaction
- Enhancement can also be an artifact of different normalizations (≈ 15%)

Westfälische Wilhelms-Universität

Münster

WASA – Wide Angle Shower Apparatus

Database

- Data for the reaction $p + d \rightarrow {}^{3}He + \eta$ at 60 MeV excess energy were taken with WASA-at-COSY setup (decay studies)
- To verify the GEM data point additional data were taken at 49 MeV
- Relative normalization of both data sets possible
- Data taken at same run period August/September 2009 to minimize systematic uncertainties
- Preselection on $p + d \rightarrow {}^{3}He + X$ events via ${}^{3}He$ identification in $\Delta E - E$ plot (energy loss in Forward Trigger Hodoscope versus energy loss in Forward Range Hodoscope)

-UNIVERSITÄT

Number of η Events

- The number of η events are extracted from the missing mass spectra of different angular ranges
- The background for each $\cos \vartheta_{\rm CMS}$ bin is fitted with MC simulations and subtracted
- The peak is fitted with a Gaussian distribution to determine the 3σ area
- The events are counted in this area and are corrected to 100%
- The extracted η numbers are corrected for the detector acceptance

Momenta Adaption to MC Data

- Comparison between MC data and measured data
- Linear fit for momenta correction
- Further corrections (e.g. φ dependent)

Angular Binning

- For an appropriate $\cos(\vartheta_{\text{CMS}})$ binning check reconstruction via Simulations
- Fit projections of spectrum with Gaussian to get the standard deviation
- → Binwidth: 0.08
- → 25 bins

UNIVERSITÄT

Florian Bergmann (WWU-Münster)

 $p + d \rightarrow {}^{3}He + \eta cross sections$

Acceptance Correction

- Aim: determination of the ratio $\frac{\sigma(49 \text{ MeV})}{\sigma(60 \text{ MeV})}$
- → Relative normalization via the single pion production p + d \rightarrow ^{3}He + π^{0}
- The excess energies for the single pion production are Q = 462 MeV and Q = 473 MeV respectively for the two data samples
- The phase space volume changes by approximately 1 % only:

$$\sqrt{\frac{Q = 473 \text{ MeV}}{Q = 462 \text{ MeV}}} \approx 1,01$$

- The π^0 ratio corresponds to the ratio of the integrated luminosities and is used as normalization factor
- → Absolute normalization to the 60 MeV ANKE cross section

- Momenta correction for π^0 production: Same correction for 49 and 60 MeV data
- Scaling via background 5
- Next:
 - Fit background and subtract it from the spectra
 - Count number of $p + d \rightarrow {}^{3}He + \pi^{0}$ events

➔ Normalization factor

Florian Bergmann (WWU-Münster)

 $p + d \rightarrow {}^{3}He + \eta$ cross sections

$p + d \rightarrow {}^{3}He + \eta$ Differential Cross Sections

Westfälische Wilhelms-Universität

Münster

• For each energy differential cross section bins 2 – 24 are fitted by a third order polynomial:

$$\frac{d\sigma}{d\Omega} = a_0 \cdot \left[1 + \sum_{n=1}^{3} a_n (\cos(\vartheta_{\text{CMS}}))^n \right]$$

lary	<i>Q</i> / MeV	<i>a</i> ₀ / (nb/sr)	<i>a</i> ₁	<i>a</i> ₂	<i>a</i> ₃	χ^2 / ndf
	48.8	34.4 <u>+</u> 0.4	1.15 <u>+</u> 0.03	-0.29 ± 0.03	-0.44 ± 0.05	2.83
brei	59.8	33.7 <u>+</u> 0.3	1.24 ± 0.02	-0.25 ± 0.02	-0.52 ± 0.03	2.11

➔ Compare with polynomial fits obtained for existing WASA/PROMICE and ANKE data

NIVERSITÄT

Differential Cross Sections – Fit Parameter

Westfälische Wilhelms-Universität Münster

 $p + d \rightarrow {}^{3}He + \eta$ cross sections

Florian Bergmann (WWU-Münster)

$p + d \rightarrow {}^{3}He + \eta$ Total Cross Sections

Florian Bergmann (WWU-Münster)

 $p + d \rightarrow {}^{3}He + \eta$ cross sections

MESON – May/June 2012 16/17

- Angular distributions of the $p + d \rightarrow {}^{3}He + \eta$ reaction at 49 and 60 MeV excess energy were extracted
- Total and differential cross sections have been determined by a normalization to the 60 MeV ANKE data
- 49 and 60 MeV total and differential cross sections determined by WASA-at-COSY agree within their uncertainties with each other

 $\sigma_{\text{WASA}}^{\text{prel.}}(49 \text{ MeV}) = (391.7 \pm 9.9) \text{nb} \pm 57 \text{ nb normalization error}$

• A cross section increase at 49 MeV excess energy has not been observed