$pp \rightarrow p(p)e^+e^-$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Production and Dalitz decays of baryon resonances in proton-proton interaction at $\sqrt{s} = 3.16$ GeV with HADES

Adrian Dybczak

Jagiellonian University Cracow

June 4, 2012

Inclusive e^+e^- spectra can be described by incoherent sum of various hadronic sources, but:

 $\blacktriangle e^+e^-$ yield below vector meson pole $(M_{inv}^{e^+e^-} \in (0.5 - 0.7))$ is not fully described,

barionic Dalitz decays are included for $\Delta(1232)$ only.

offshell ρ meson, higher resonances contributions?

Exclusive channel ppe^+e^- can better constraint elementary sources of dilepton production:

- ▲ selection on $M_{miss}^{pe^+e^-} \approx M_p$
- \blacktriangle no η Dalitz contribution.
- ▲ yield below vector meson pole sensitive

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

to Resonance decays $R \rightarrow Ne^+e^-$

×10⁻³ dơ/dM_{ee} [mb/(GeV/c²)] p+Nb p+p (scaled) 0.5 Pee < 0.8 GeV/c 0.6 0.8

▲□▶▲□▶▲□▶▲□▶ □ のQで

Inclusive e^+e^- spectra can be described by incoherent sum of various hadronic sources, but:

 $\blacktriangle e^+e^-$ yield below vector meson pole $(M_{inv}^{e^+e^-} \in (0.5 - 0.7))$ is not fully described,

barionic Dalitz decays are included for $\Delta(1232)$ only.

offshell ρ meson, higher resonances contributions?

Exclusive channel ppe^+e^- can better constraint elementary sources of dilepton production:

- ▲ selection on $M_{miss}^{pe^+e^-} \approx M_p$
- \blacktriangle no η Dalitz contribution.
- ▲ yield below vector meson pole sensitive
- to Resonance decays $R \rightarrow Ne^+e^-$

 $pp \to p(n)\pi^+/pp(\pi^0)$

 $pp \rightarrow p(p)e^+e^-$

Inclusive e^+e^- spectra can be described by incoherent sum of various hadronic sources, but:

▲ e^+e^- yield below vector meson pole $(M_{inv}^{e^+e^-} \in (0.5 - 0.7))$ is not fully described,

▲ barionic Dalitz decays are included for $\Delta(1232)$ only.

offshell ρ meson, higher resonances contributions?

Motivations

Exclusive channel ppe^+e^- can better constraint elementary sources of dilepton production:

- ▲ selection on $M_{miss}^{pe^+e^-} \approx M_p$
- **A** no η Dalitz contribution.
- ▲ yield below vector meson pole sensitive

▲□▶▲□▶▲□▶▲□▶ □ のQで

to Resonance decays $R \rightarrow Ne^+e^-$

 $pp \rightarrow p(p)e^+e^-$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

General idea

 $pp \to p(n)\pi^+/pp(\pi^0)$

 $pp \rightarrow p(p)e^+e^-$

HADES spectrometer

▲□▶▲圖▶★≧▶★≧▶ 差 のへで

Analysis of $pn\pi^+$, $pp\pi^0$ final states

GENERAL STRATEGY

Selection of events with two positive tracks.

Charged particles $[p, \pi^+]$ identification via β vs *mom* correlation.

Channel selection via conditions on missing mass of neutral particle $[\pi^0, n]$.

SIGNAL EXTRACTION

Signal is estimated as a number of counts in peak of neutron missing mass after background subtraction.

Advantages of $p(n)\pi^+$ final state

This channel allows for unique resonance association: $p\pi^+$ - double charged

ヘロト ヘ戸ト ヘヨト ヘヨト

 $n\pi^+$ - single charged

Larger acceptance

 $pp \rightarrow p(n)\pi^+/pp(\pi^0)$

 $pp \rightarrow p(p)e^+e^-$

ヘロト 人間 とくほとくほとう

э

 $pp(\pi^0)$ channel selection

Signal is estimated in 3 step process:

- 1. Elimination of elastic scattering events via conditions on coplanarity and polar angles of outgoing protons.
- 2. Subtraction of simulated multipion production.
- 3. Estimation of signal in π^0 missing mass peak.

 $pp \to p(n)\pi^+/pp(\pi^0)$

 $pp \rightarrow p(p)e^+e^-$

Comparison with simulation

GENERAL STRATEGY

Full analysis chain ($GEN \rightarrow GEANT \rightarrow DST \rightarrow ANALISYS$) done for assuming incoherent sum of resonances.

Estimation of resonances cross sections via **simultanous comparison of data to simulation for two channels** $pp\pi^0$ **and** $pn\pi^+$ by means of:

invariant masses - $M_{inv}^{p\pi^+}$, $M_{inv}^{n\pi^+}$, $M_{inv}^{p\pi^0}$ angular distributions - $cos\theta_{CM}^{p\pi^+}$, $cos\theta_{CM}^{n\pi^+}$, $cos\theta_{CM}^{p\pi^0}$.

Normalization to number of elastic scattering events.

Model dependent acceptance/efficiency correction.

 $pp \rightarrow p(n)\pi^+/pp(\pi^0)$

 $pp \rightarrow p(p)e^+e^-$

- Only 4 stars resonances included above.
- Δ (*N*^{*}) resonances distinguished by final state $p\pi^+$ ($n\pi^+$).
- For regimes of overlaping mass, resonances with biggest predicted contribution to dilepton production
 ([3],[4]) were included, but model uncertainty will be show as well.

[1] S. Teis et al., Z. Phys. A 356 (1997) 421-435 [3] M.I. Krivoruchenko et al., Annals Phys.296:299-346,2002

[2] A. V. Anisovich, arXiv:1112.4937v1

[4] M. Zetenyi and Gy. Wolf., Heavy Ion Phys. 17 (2003) 27-39

000

Adjusting resonance model in Hades acceptance

Adjusting resonance model in Hades acceptance

 $pp \rightarrow p(n)\pi^+/pp(\pi^0)$

 $pp \rightarrow p(p)e^+e^-$

 $pp \to p(n)\pi^+/pp(\pi^0)$

 $pp \rightarrow p(p)e^+e^-$

Comparison with Teis model

 $pp \rightarrow p(p)e^+e^-$

General conditions of signal extraction:

- only events with lvl2 trigger
- pair opening angle > 9[°]
- angle to closest partner > 5[°]
- $M_{inv}^{e^+e^-} > 0.15[GeV/c^2]$
- combinatorial background estimated as sum of like-sign pairs

Comparison of Zetenyi-Wolf model (QED) with data

"Dilepton decays of baryon resonances" - M. Zetenyi and Gy. Wolf, Heavy Ion Phys. 17 (2003) 27-39

Formula of $\Gamma_{pee}(M)$ has been applied in PLUTO++ calculations and compared with data.

Cross section for exclusive ω , η channels from Khaled. ρ assumed to be half of ω .

Cross section for Resonances production, and angular distributions taken from previous chapter.

Comparison was done inside HADES acceptance on uncorrected spectra (efficiency and smearing included in simulation).

$pp \rightarrow p(n)\pi^+/pp(\pi^0)$

Comparison of Zetenyi-Wolf (QED) model with data

- Cocktail: Mesonic channels + $\Delta(1232)$ + Higher res. + $\Delta(1232)\pi$ and $\eta\pi \leftarrow$ free parameters constrainted by inclusive analisys.
- ρ produced via phase space. $\sigma_{\rho} = \frac{1}{2}\sigma_{\omega}$ see (Phys. Rev. Lett. 89(2002) 092001).

Comparison of Zetenyi-Wolf (QED) model with data

- Cocktail: Mesonic channels + $\Delta(1232)$ + Higher res. + $\Delta(1232)\pi$ and $\eta\pi \leftarrow$ free parameters constrainted by inclusive analisys.
- ρ produced via phase space. $\sigma_{\rho} = \frac{1}{2}\sigma_{\omega}$ see (Phys. Rev. Lett. 89(2002) 092001).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 = の々で

 $pp \rightarrow p(n)\pi^+/pp(\pi^0)$

 $pp \rightarrow p(p)e^+e^-$

Comparison of QED model + Δ (1232) FF with data

Wan/Iachello model of $\Delta(1232)$ FF

Int. J. Mod. Phys. A 20 (2005)

▲□▶▲□▶▲□▶▲□▶ □ のQで

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Comparison of Zetenyi-Wolf (QED) model with data

- Cocktail: Mesonic channels + $\Delta(1232)$ + FF + Higher res. + $\Delta(1232)\pi$ and $\eta\pi \leftarrow$ free parameters constrainted by inclusive analisys.
- ρ produced via phase space. $\sigma_{\rho} = \frac{1}{2}\sigma_{\omega}$ see (Phys. Rev. Lett. 89(2002) 092001).

Comparison of Zetenyi-Wolf (QED) model with data

- Cocktail: Mesonic channels + $\Delta(1232)$ + FF + Higher res. + $\Delta(1232)\pi$ and $\eta\pi \leftarrow$ free parameters constrainted by inclusive analisys.
- ρ produced via phase space. $\sigma_{\rho} = \frac{1}{2}\sigma_{\omega}$ see (Phys. Rev. Lett. 89(2002) 092001).

Comparison of Martemyanov-Krivoruchenko (eVMD) model with data

"Electromagnetic transition form factors and dilepton decay rates of nucleon resonances" - M.I. Krivoruchenko, B.V. Martemyanov, Annals Phys. 296: 299-346, 2002

Calculations provided by authors.

No free ω , ρ production.

Cross section for Resonances production, and angular distributions taken from previous chapter.

Comparison was done inside HADES acceptance on uncorrected spectra (efficiency and smearing included in simulation).

Comparison of Martemyanov-Krivoruchenko (eVMD) model with data

- Cocktail: $\eta + \Delta(1232) +$ Higher res.
 - + $\Delta(1232)\pi$ and $\eta\pi \leftarrow$ free parameters constrainted by inclusive analisys.
- no ρ and ω free production !!!
- grey band do not contain model uncertainty.

590

Comparison of Martemyanov-Krivoruchenko (eVMD) model with data

- Cocktail: $\eta + \Delta(1232)$ + Higher res.
 - + $\Delta(1232)\pi$ and $\eta\pi \leftarrow$ free parameters constrainted by inclusive analisys.
- no ρ and ω free production !!!
- grey band do not contain model uncertainty.

 $pp \rightarrow p(n)\pi^+/pp(\pi^0)$

 $pp \rightarrow p(p)e^+e^-$

A poor man's approach

 $R
ightarrow
ho N
ightarrow e^+ e^- N$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

 $pp \rightarrow p(n)\pi^+/pp(\pi^0)$

 $pp \rightarrow p(p)e^+e^-$

A poor man's approach

- Cocktail: Mesonic channels + $\Delta(1232)$ + Higher res. + ρ via N*(1520) + $\Delta(1232)\pi$ and $\eta\pi \leftarrow$ free parameters constrainted by inclusive analisys.
- ρ produced via phase space. $\sigma_{\rho} = \frac{1}{2}\sigma_{\omega}$ see (Phys. Rev. Lett. 89(2002) 092001).
- additional production of ρ via N*(1520), Δ(1620) !!!

・ロト・国・・ヨト・ヨー うらぐ

 $pp \rightarrow p(n)\pi^+/pp(\pi^0)$

 $pp \rightarrow p(p)e^+e^-$

A poor man's approach

- Cocktail: Mesonic channels + $\Delta(1232)$ + Higher res. + ρ via N*(1520) + $\Delta(1232)\pi$ and $\eta\pi \leftarrow$ free parameters constrainted by inclusive analisys.
- ρ produced via phase space. $\sigma_{\rho} = \frac{1}{2}\sigma_{\omega}$ see (Phys. Rev. Lett. 89(2002) 092001).
- additional production of ρ via N*(1520), Δ(1620) !!!

OUTLOOK & CONCLUSIONS

Hadronic part

- All distributions in hadronic channels are described very well.
- Not isotropic production of resonances concluded from comparison with data.
- Cross section for resonances production via analisys of $pn\pi^+$ and $pp\pi^0$ channel with error calculation and isospin relation conservation.
- Estimated cross sections for π^0 and π^+ productions in good agreement with previous observations.

Leptonic part

- Zetenyi-Wolf model of $\Gamma_{R \to pe^+e^-}$ cannot fully describes data (coupling ρ, ω to resonances maybe?).
- Adding Wan/Iachello $\Delta(1232)$ FF seem to be one of the way to describe data.
- Martemyanov-Krivoruchenko model of $\Gamma_{R \to pe^+e^-}$ has huge uncertainty but still cannot describe data $(M_{inm}^{pe^+e^-})$.
- A poor man's approach can describe shapes of observables in error range so seem to be second way to describe data, but has double counting problem.

 $pp \rightarrow p(n)\pi^+/pp(\pi^0)$

 $pp \rightarrow p(p)e^+e^-$

Angle definitions

 $pp \rightarrow p(n)\pi^+/pp(\pi^0)$

 $pp \to p(p) e^+ e^-$

$pp(\pi^0)$ - Helicity & Godfrey-Jakcson angle

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

 $pp \rightarrow p(n)\pi^+/pp(\pi^0)$

 $pp \rightarrow p(p)e^+e^-$

$pp(\pi^0)$ - Helicity & Godfrey-Jakcson angle

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

$pp(\pi^0)$ - Helicity & Godfrey-Jakcson angle

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

 $pp \rightarrow p(n)\pi^+/pp(\pi^0)$

 $pp \rightarrow p(p)e^+e^-$

$N\pi$ - summary table.

J^P	Resonance	σ_{Res} [mb]	σ_{π^+} [mb]	$\sigma_{\pi^0} \ [mb]$
3/2+	$\Delta(1232)^{++}$	7.60 ± 0.92	7.60 ± 0.92	—
3/2+	$\Delta(1232)^{+}$	2.53 ± 0.31	$0.85 {\pm} 0.10$	1.69 ± 0.20
1/2-	$\Delta(1620)^{++}$	0.30 ± 0.07	0.08 ± 0.02	—
1/2-	$\Delta(1620)^{+}$	0.10 ± 0.03	0.01 ± 0.01	0.02 ± 0.01
3/2-	$\Delta(1700)^{++}$	1.35 ± 0.47	0.20 ± 0.07	—
3/2-	$\Delta(1700)^{+}$	$0.45{\pm}0.16$	0.02 ± 0.01	$0.05 {\pm} 0.02$
1/2+	$\Delta(1910)^{++}$	1.15 ± 0.32	$0.29 {\pm} 0.08$	—
1/2+	$\Delta(1910)^{+}$	$0.38 {\pm} 0.25$	$0.03 {\pm} 0.01$	0.07 ± 0.02
1/2+	$N^{*}(1440)^{+}$	1.50 ± 0.27	0.65 ± 0.12	0.39 ± 0.07
3/2-	$N^{*}(1520)^{+}$	2.10 ± 0.34	0.77 ± 0.12	$0.39 {\pm} 0.06$
1/2-	$N^{*}(1535)^{+}$	0.12 ±0.04	$0.04 {\pm} 0.01$	0.02 ± 0.01
5/2+	$N^*(1680)^+$	$0.90 {\pm} 0.15$	$0.39 {\pm} 0.06$	$0.20 {\pm} 0.03$

$$\begin{array}{l} \sigma_{\pi^+}^{\Delta} = 8.44 \pm 1.01 \ [\text{mb}] \\ = = = = = \\ \sigma_{\pi^+}^{I=\frac{3}{2}} = 0.63 \pm 0.19 \ [\text{mb}] \\ = = = = = \\ \sigma_{\pi^+}^{I=\frac{1}{2}} = 1.85 \pm 0.31 \ [\text{mb}] \\ = = = = \\ \sigma_{\pi^+} = 10.92 \pm 1.52 \ [\text{mb}] \end{array}$$

$$\begin{array}{l} \sigma^{\Delta}_{\pi^0} = 1.73 \pm 0.21 \ [\mathrm{mb}] \\ \hline \sigma^{I=\frac{3}{2}}_{\pi^0} = 0.19 \pm 0.08 \ [\mathrm{mb}] \\ \hline \sigma^{I=\frac{1}{2}}_{\pi^0} = 1.03 \pm 0.16 \ [\mathrm{mb}] \\ \hline \sigma^{\pi^0}_{\pi^0} = 2.96 \pm 0.45 \ [\mathrm{mb}] \end{array}$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

[†] - N^*1535 constarinted by $pp \rightarrow pp\eta$ channel (Khaled Teilab Phd thesis).

 $N^*(1535) \xrightarrow{BR=52.5\%} p\eta$ only 47% from resonance

 $(\sigma_{\eta} = 137[\mu b] \longrightarrow \sigma_{N^*} = 122.5 \pm 6.9(stat) \pm 29.1(sys) \ [\mu b])$

Comparison with Teis model

J^P	Resonance
3/2+	$\Delta(1232)$
1/2+	$N^{*}(1440)$
3/2-	N*(1520)
1/2-	N*(1535)
	. (1 (2 2))
3/2+	$\Delta(1600)$
1/2-	$\Delta(1620)$
1 /0	$M \neq (1(\Box 0))$
1/2-	$N^{*}(1650)$
5/2-	$N^{*}(1675)$
5/2+	$N^{*}(1680)$
3/2+	N*(1720)
3/2-	$\Delta(1700)$
5/2+	$\Delta(1905)$
1/2+	$\Delta(1910)$
1/2-	$\Delta(1950)$

ieis model				
σ_{π^0}	σ_{π^+}			
[mb]	[mb]			
4.00	=			
1.33	6.67			
0.18	0.36			
0.04	0.08			
0.44	0.88			
0.07	0.35			
0.12	0.62			
0.07	0.10			
0.06	0.12			
0.34	0.68			
0.05	0.1			
0.01	0.03			
0.01	0.03			
0.01	0.00			
0.01	0.02			
0.12	0.65			
0.04	0.23			

T. 1.1

Fit	
$\sigma_{\pi^0} \ [ext{mb}]$	σ_{π^+} [mb]
1.69 ± 0.21	$8.44 {\pm} 1.01$
$0.33 {\pm} 0.06$	0.65 ± 0.12
$0.39 {\pm} 0.06$	0.77 ± 0.12
$0.02 {\pm} 0.04$	0.04
0.02±0.01	0.09±0.03
0.20 ± 0.03	0.39 ± 0.06
0.05 ± 0.02	0.22 ± 0.08
0.07 ± 0.02	0.32 ± 0.09

・ロト・日本・モート 日 のくぐ
Motivations

 $pp \rightarrow p(n)\pi^+/pp(\pi^0)$

 $pp \rightarrow p(p)e^+e^-$

▲□▶ ▲□▶ ▲□▶ ★□▶ = 三 のへで

Backup slides

eVMD vs QED

 $pp \rightarrow p(p)e^+e^-$

Review of BR(e^+e^-)

J^P	Resonance	σ_R	QED	eVMD
3/2+	$\Delta(1232)$	$2.53{\scriptstyle \pm 0.31}$	4.2e-5	4.2e-5
1/2+	$N^{*}(1440)$	1.50 ± 0.27	3.06e-6	4.0e-6
3/2-	$N^{*}(1520)$	2.10 ± 0.34	3.72e-5	5.0e-5
1/2-	$N^{*}(1535)$	$0.12{\pm}0.04$	1.45e-5	1.34e-5
3/2+	$\Delta(1600)$	$0.24 {\pm} 0.10$	0.73e-6	0.68e-6
1/2-	$\Delta(1620)$	$0.10 {\pm} 0.03$	1.73e-6	8.8e-6
1/2-	N*(1650)	0.81 ± 0.13	8.03e-06	1.95e-5
5/2-	$N^{*}(1675)$	1.65 ± 0.27	1.02e-06	1.40e-06
5/2+	N*(1680)	$0.90 {\pm} 0.15$	1.97e-5	1.98e-5
3/2+	N*(1720)	$4.41 {\pm} 0.72$	3.65e-06	3.69e-05
3/2-	$\Delta(1700)$	$0.45{\pm}0.16$	1.38e-5	2.0e-5
5/2+	$\Delta(1905)$	0.85 ± 0.53	1.46e-06	3.19e-05
1/2+	$\Delta(1910)$	$0.38 {\pm} 0.25$	0.73e-5	0.53e-5
1/2-	$\Delta(1950)$	$0.10 {\pm} 0.06$	3.06e-6	1.12e-05

QED

 $BR(e^+e^-)$ at the pole calulated as ratio of $BR(p\gamma)$ and 137 (arXiv.org/abs/nucl-th/0202047v1, page 12)

eVMD

 $BR(e^+e^-)$ at the pole calulated as ratio of $\Gamma^{e^+e^-}$ and Γ^{tot} (arXiv.org/abs/nucl-th/0110066v2, page 35)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Equivalent cross section

Model uncertainty in eVMD model

▲ロト▲聞ト▲臣ト▲臣ト 臣 のへ⊙

 $pp \rightarrow p(p)e^+e^-$

Model uncertainty in eVMD model

 $pp \rightarrow p(p)e^+e^-$

Model uncertainty in eVMD model

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

 $pp \rightarrow p(p)e^+e^-$

Model uncertainty in GiBUU model

▲□▶▲圖▶★≧▶★≧▶ 差 のへで

 $pp \rightarrow p(p)e^+e^-$

Model uncertainty in GiBUU model

▲□▶ ▲□▶ ▲□▶ ★□▶ = 三 のへで

 $pp \rightarrow p(p)e^+e^-$

Model uncertainty in GiBUU model

▲□▶ ▲□▶ ▲□▶ ★□▶ = 三 のへで

 $pp \to p(n)\pi^+/pp(\pi^0)$

 $pp \rightarrow p(p)e^+e^-$

Model uncertainty in GiBUU model

▲□▶▲圖▶★≧▶★≧▶ 差 のへで

 $pp \rightarrow p(p)e^+e^-$

Model uncertainty in UrQMD model

▲□▶▲□▶▲□▶▲□▶ = のへで

 $pp \rightarrow p(p)e^+e^-$

Model uncertainty in UrQMD model

▲□▶ ▲□▶ ▲□▶ ★□▶ = 三 のへで

 $pp \rightarrow p(p)e^+e^-$

Model uncertainty in UrQMD model

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

 $pp \rightarrow p(p)e^+e^-$

Model uncertainty in UrQMD model

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Review of BR($N\rho$) in a 'la transport models

J^P	Resonance	σ_R	UrQMD	GiBUU
3/2+	Δ (1232)	2.53 ± 0.31		_
1/2+	N*(1440)	1.50 ± 0.27	_	—
3/2-	N*(1520)	2.10 ± 0.34	_	0.21
1/2-	N*(1535)	$0.12{\pm}0.04$		0.03
3/2+	$\Delta(1600)$	$0.24 {\pm} 0.10$	_	—
1/2-	$\Delta(1620)$	$0.10 {\pm} 0.03$	_	0.29
1/2-	N*(1650)	0.81 ± 0.13	_	0.03
5/2-	N*(1675)	1.65 ± 0.27	_	—
5/2+	$N^{*}(1680)$	$0.90 {\pm} 0.15$	_	0.07
3/2+	N*(1720)	$4.41 {\pm} 0.72$	0.25	0.87
3/2-	$\Delta(1700)$	$0.45{\pm}0.16$	0.10	0.08
5/2+	$\Delta(1905)$	0.85 ± 0.53	0.60	0.87
1/2+	$\Delta(1910)$	0.38 ± 0.25	0.40	—
1/2-	$\Delta(1950)$	$0.10 {\pm} 0.06$	none	none

Equivalent cross section

Review of BR($N\rho$) in a 'la transport models

resonance	mass	\mathbf{width}	$N\gamma$	$N\pi$	$N\eta$	$N\omega$	$N \varrho$	$N\pi\pi$	$\Delta_{1232}\pi$	$N_{1440}^{*}\pi$	ΛK
N_{1440}^{*}	1.440	200		0.70				0.05	0.25		
N^{*}_{1520}	1.520	125		0.60				0.15	0.25		
N_{1535}^{*}	1.535	150	0.001	0.55	0.35			0.05		0.05	
N^{*}_{1650}	1.650	150		0.65	0.05			0.05	0.10	0.05	0.10
N^{*}_{1675}	1.675	140		0.45					0.55		
N^{*}_{1680}	1.680	120		0.65				0.20	0.15		
N^{*}_{1700}	1.700	100		0.10	0.05		0.05	0.45	0.35		
N^{*}_{1710}	1.710	110		0.15	0.20		0.05	0.20	0.20	0.10	0.10
N^{*}_{1720}	1.720	150		0.15			0.25	0.45	0.10		0.05
N_{1900}^{*}	1.870	500		0.35		0.55	0.05		0.05		
N_{1990}^{*}	1.990	550		0.05			0.15	0.25	0.30	0.15	0.10
N_{2080}^{*}	2.040	250		0.60	0.05		0.25	0.05	0.05		
N^{*}_{2190}	2.190	550		0.35			0.30	0.15	0.15	0.05	
N^{*}_{2220}	2.220	550		0.35			0.25	0.20	0.20		
N^{*}_{2250}	2.250	470		0.30			0.25	0.20	0.20	0.05	
Δ_{1232}	1.232	115.	0.01	1.00							
Δ_{1600}^{*}	1.700	200		0.15					0.55	0.30	
Δ_{1620}^{*}	1.675	180		0.25					0.60	0.15	
Δ_{1700}^{*}	1.750	300		0.20			0.10		0.55	0.15	
Δ_{1900}^{*}	1.850	240		0.30			0.15		0.30	0.25	
Δ_{1905}^{*}	1.880	280		0.20			0.60		0.10	0.10	
Δ_{1910}^{*}	1.900	250		0.35			0.40		0.15	0.10	
Δ_{1920}^{*}	1.920	150		0.15			0.30		0.30	0.25	
Δ_{1930}^{*}	1.930	250		0.20			0.25		0.25	0.30	
Δ_{1950}^{*}	1.950	250	0.01	0.45			0.15		0.20	0.20	

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Review of BR($N\rho$) in a 'la transport models

		M_0	Γ_0	$ M^2 /1$	$ M^2 /16\pi \text{ [mb GeV}^2]$ branching ratio in %							
	rating	[MeV]	[MeV]	NR	ΔR	πN	ηN	$\pi \Delta$	ρN	σN	$\pi N^{*}(1440)$	$\sigma \Delta$
$P_{11}(1440)$	***	1462	391	70		69	_	22_P	_	9		_
$S_{11}(1535)$	***	1534	151	8	60	51	43		$2_{S} + 1_{D}$	1	2	
$S_{11}(1650)$	***	1659	173	4	12	89	3	2_D	3_D	2	1	_
D ₁₃ (1520)	****	1524	124	4	12	59		$5_{S} + 15_{D}$	21_{S}			
$D_{15}(1675)$	****	1676	159	17		47		53_{D}				
$P_{13}(1720)$	*	1717	383	4	12	13			87_P			
$F_{15}(1680)$	****	1684	139	4	12	70		$10_P + 1_F$	$5_P + 2_F$	12		
$P_{33}(1232)$	****	1232	118	OBE	210	100	_		_	_		_
$S_{31}(1620)$	**	1672	154	7	21	- 9		62_{D}	$25_{S} + 4_{D}$			
$D_{33}(1700)$	*	1762	599	7	21	14		$74_{S} + 4_{D}$	8_S			
P ₃₁ (1910)	****	1882	239	14		23					67	10_P
$P_{33}(1600)$	***	1706	430	14		12		68_{P}			20	
$F_{35}(1905)$	***	1881	327	7	21	12		1_P	87_P			
$F_{37}(1950)$	****	1945	300	14	_	38	—	18_F	—	—	_	44_F

Errors estimation

Systematical error has been calculated as a largest deviation of signal counts for different background polynomial functions in each bin of signal separately.

Total error of each signal bin has been calculated as a sum of statistical and systematical errors.

$$\mathbf{I}\chi^2 = \sum \frac{(Y_i^{fit} - Y_i^{data})^2}{(\sigma_i^{TOTAL})^2} / NDF$$

where *NDF* is number of fitted point minus 8 parameters (resonances amplitudes) minus 1. $\chi^2_{TOTAL} = 0.91$ In the same way χ^2 can be calulated for each resonance.

Error of estimated resonance cross section was calulated as $\sqrt{\frac{\sum (y_i^{fit} - y_i^{data})^2}{N-1}}$ with respect to χ^2_{Res}

 $pp \to p(p) e^+ e^-$

Comparison with UrQMD

996

æ

 $pp \rightarrow p(p)e^+e^-$

Comparison with UrQMD

590

æ

 $pp \to p(p) e^+ e^-$

Comparison with UrQMD

₹ 9Q@

 $pp \rightarrow p(p)e^+e^-$

Comparison with UrQMD

 $pp \rightarrow p(p)e^+e^-$

Comparison with UrQMD

900

æ

 $pp \rightarrow p(p)e^+e^-$

 $\Delta(1232)$

• 4π

Condition	Integral QED	Integral eVMD
4π	2.34e-07	1.40e-07
oa> 9[°]		
$M_{inv}^{e^+e^-} > 0.15$		
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$		

	eVMD	QED
$BR(e^+e^-)$	4.00e-6	3.06e-6

◆□ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ● ● ● ●

 $pp \rightarrow p(p)e^+e^-$

 $\Delta(1232)$

• $4\pi + oa > 9[^{\circ}]$

Condition	Integral QED	Integral eVMD
4π	2.34e-07	1.40e-07
oa>9[°]	8.05e-08	7.53e-08
$M_{inv}^{e^+e^-} > 0.15$		
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$		

	eVMD	QED
$BR(e^+e^-)$	4.00e-6	3.06e-6

▲□▶▲□▶▲□▶▲□▶ □ ● ● ● ●

 $pp \to p(p) e^+ e^-$

$$\Delta(1232)$$

•
$$4\pi$$
 + oa> 9[°] + $M_{inv}^{e^+e^-}$ > 0.15[GeV/c²]

Condition	Integral QED	Integral eVMD
4π	2.34e-07	1.40e-07
oa>9[°]	8.05e-08	7.53e-08
$M_{inv}^{e^+e^-} > 0.15$	2.63e-08	2.95e-08
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$		

	eVMD	QED
$BR(e^+e^-)$	4.00e-6	3.06e-6

(日)

æ

 $pp \rightarrow p(p)e^+e^-$

 $\Delta(1232)$

• ACC + oa > 9[°] +
$$M_{inv}^{e^+e^-}$$
 > 0.15[GeV/c²] + $M_{miss}^{pe^+e^-} \in (0.84 - 1.02)[GeV/c^2]$

Condition	Integral QED	Integral eVMD
4π	2.34e-07	1.40e-07
oa>9[°]	8.05e-08	7.53e-08
$M_{inv}^{e^+e^-} > 0.15$	2.63e-08	2.95e-08
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$	3.39e-10	3.23e-10

	eVMD	QED
$BR(e^+e^-)$	4.00e-6	3.06e-6

イロト イ理ト イヨト イヨト

æ

Motivations

 $pp \rightarrow p(n)\pi^+/pp(\pi^0)$

 $pp \rightarrow p(p)e^+e^-$

 $N^{*}(1440)$

4π

Condition	Integral QED	Integral eVMD
4π	8.3e-9	1.01e-8
oa>9[°]		
$M_{inv}^{e^+e^-} > 0.15$		
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$		

	QED	eVMD
$BR(e^+e^-)$	3.06e-6	4.00e-6

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

 $pp \rightarrow p(p)e^+e^-$

$N^{*}(1440)$

• $4\pi + oa > 9[^{\circ}]$

Condition	Integral QED	Integral eVMD
4π	8.3e-9	1.01e-8
oa>9[°]	3.11e-9	7.96e-9
$M_{inv}^{e^+e^-} > 0.15$		
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$		

	QED	eVMD
$BR(e^+e^-)$	3.06e-6	4.00e-6

・ロト・日本・日本・日本・日本・日本・日本

 $N^{*}(1440)$

 $pp \rightarrow p(p)e^+e^-$

•
$$4\pi$$
 + oa> 9[°] + $M_{inv}^{e^+e^-}$ > 0.15[GeV/c²]

Condition	Integral QED	Integral eVMD
4π	8.3e-9	1.01e-8
oa> 9[°]	3.11e-9	7.96e-9
$M_{inv}^{e^+e^-} > 0.15$	1.70e-9	6.81e-9
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$		

	QED	eVMD
$BR(e^+e^-)$	3.06e-6	4.00e-6

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Motivations

 $pp \rightarrow p(n)\pi^+/pp(\pi^0)$

 $pp \rightarrow p(p)e^+e^-$

$N^{*}(1440)$

• ACC + oa > 9[°] +
$$M_{inv}^{e^+e^-}$$
 > 0.15[GeV/c²] + $M_{miss}^{pe^+e^-} \in (0.84 - 1.02)[GeV/c^2]$

Condition	Integral QED	Integral eVMD
4π	8.3e-9	1.01e-8
oa>9[°]	3.11e-9	7.96e-9
$M_{inv}^{e^+e^-} > 0.15$	1.70e-9	6.81e-9
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$	6.89e-12	7.86e-11

	QED	eVMD
$BR(e^+e^-)$	3.06e-6	4.00e-6

Motivations

 $pp \rightarrow p(n)\pi^+/pp(\pi^0)$

 $pp \rightarrow p(p)e^+e^-$

*N**(1520)

• 4π

Condition	Integral QED	Integral eVMD
4π	1.08e-7	7.35e-8
oa> 9[°]		
$M_{inv}^{e^+e^-} > 0.15$		
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$		

	QED	eVMD
$BR(e^+e^-)$	3.72e-5	5.0e-5

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 $pp \rightarrow p(p)e^+e^-$

*N**(1520)

• $4\pi + oa > 9[^{\circ}]$

Condition	Integral QED	Integral eVMD
4π	1.08e-7	7.35e-8
oa>9[°]	4.21e-8	4.05e-8
$M_{inv}^{e^+e^-} > 0.15$		
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$		

	QED	eVMD
$BR(e^+e^-)$	3.72e-5	5.0e-5

・ロト・日本・日本・日本・日本・日本・日本

 $N^{*}(1520)$

 $pp \rightarrow p(p)e^+e^-$

$$4\pi + oa > 9[^{\circ}] + M_{inv}^{e^+e^-} > 0.15[GeV/c^2]$$

Condition	Integral QED	Integral eVMD
4π	1.08e-7	7.35e-8
oa>9[°]	4.21e-8	4.05e-8
$M_{inv}^{e^+e^-} > 0.15$	2.28e-8	2.29e-8
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$		

	QED	eVMD
$BR(e^+e^-)$	3.72e-5	5.0e-5

・ロト・日本・日本・日本・日本・日本・日本

 $pp \rightarrow p(p)e^+e^-$

N*(1520)

• ACC + oa > 9[°] +
$$M_{inv}^{e^+e^-}$$
 > 0.15[GeV/c²] + $M_{miss}^{pe^+e^-} \in (0.84 - 1.02)[GeV/c^2]$

Condition	Integral QED	Integral eVMD
4π	1.08e-7	7.35e-8
oa>9[°]	4.21e-8	4.05e-8
$M_{inv}^{e^+e^-} > 0.15$	2.28e-8	2.29e-8
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$	2.68e-10	2.27e-10

	QED	eVMD
$BR(e^+e^-)$	3.72e-5	5.0e-5

イロト イ理ト イヨト イヨト

æ

Motivations

 $pp \rightarrow p(n)\pi^+/pp(\pi^0)$

 $pp \rightarrow p(p)e^+e^-$

*N**(1535)

• 4π

Condition	Integral QED	Integral eVMD
4π	4.22e-9	1.98e-9
oa> 9[°]		
$M_{inv}^{e^+e^-} > 0.15$		
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$		

	QED	eVMD
$BR(e^+e^-)$	1.45e-5	1.34e-5

 $pp \rightarrow p(p)e^+e^-$

*N**(1535)

• $4\pi + oa > 9[^{\circ}]$

Condition	Integral QED	Integral eVMD
4π	4.22e-9	1.98e-9
oa> 9[°]	1.41e-9	1.41e-9
$M_{inv}^{e^+e^-} > 0.15$		
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$		

	QED	eVMD
$BR(e^+e^-)$	1.45e-5	1.34e-5

ヘロト 人間 とく ヨン く ヨン

æ
*N**(1535)

 $pp \rightarrow p(p)e^+e^-$

• 4π + oa> 9[°] + $M_{inv}^{e^+e^-}$ > 0.15[GeV/c²]

Condition	Integral QED	Integral eVMD
4π	4.22e-9	1.98e-9
oa>9[°]	1.41e-9	1.41e-9
$M_{inv}^{e^+e^-} > 0.15$	0.7e-9	1.17e-9
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$		

	QED	eVMD
$BR(e^+e^-)$	1.45e-5	1.34e-5

ヘロト 人間 とくほとくほとう

 $pp \rightarrow p(p)e^+e^-$

$N^{*}(1535)$

• ACC + oa > 9[°] +
$$M_{inv}^{e^+e^-}$$
 > 0.15[GeV/c²] + $M_{miss}^{pe^+e^-} \in (0.84 - 1.02)[GeV/c^2]$

Condition	Integral QED	Integral eVMD
4π	4.22e-9	1.98e-9
oa>9[°]	1.41e-9	1.41e-9
$M_{inv}^{e^+e^-} > 0.15$	0.7e-9	1.17e-9
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$	9.45e-12	1.89e-11

	QED	eVMD
$BR(e^+e^-)$	1.45e-5	1.34e-5

 $pp \rightarrow p(p)e^+e^-$

 $\Delta(1620)$

• 4π

Condition	Integral QED	Integral eVMD
4π	3.3e-10	1.11e-9
oa> 9[°]		
$M_{inv}^{e^+e^-} > 0.15$		
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$		

	QED	eVMD
$BR(e^+e^-)$	1.75e-6	8.8e-6

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○ ○

 $pp \rightarrow p(p)e^+e^-$

 $\Delta(1620)$

• $4\pi + oa > 9[^{\circ}]$

Condition	Integral QED	Integral eVMD
4π	3.3e-10	1.11e-9
oa>9[°]	1.1e-10	1.02e-9
$M_{inv}^{e^+e^-} > 0.15$		
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$		

	QED	eVMD
$BR(e^+e^-)$	1.75e-6	8.8e-6

 $pp \rightarrow p(p)e^+e^-$

$\Delta(1620)$

•
$$4\pi$$
 + oa> 9[°] + $M_{inv}^{e^+e^-}$ > 0.15[GeV/c²]

Condition	Integral QED	Integral eVMD
4π	3.3e-10	1.11e-9
oa>9[°]	1.1e-10	1.02e-9
$M_{inv}^{e^+e^-} > 0.15$	5.76e-11	9.81e-10
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$		

	QED	eVMD
$BR(e^+e^-)$	1.75e-6	8.8e-6

▲□▶▲□▶▲□▶▲□▶ □ ● ● ● ●

 $pp \rightarrow p(p)e^+e^-$

$\Delta(1620)$

• ACC + oa > 9[°] +
$$M_{inv}^{e^+e^-}$$
 > 0.15[GeV/c²] + $M_{miss}^{pe^+e^-} \in (0.84 - 1.02)[GeV/c^2]$

Condition	Integral QED	Integral eVMD
4π	3.3e-10	1.11e-9
oa>9[°]	1.1e-10	1.02e-9
$M_{inv}^{e^+e^-} > 0.15$	5.76e-11	9.81e-10
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$	8.10e-13	1.36e-11

	QED	eVMD
$BR(e^+e^-)$	1.75e-6	8.8e-6

Motivations

 $pp \rightarrow p(n)\pi^+/pp(\pi^0)$

 $pp \rightarrow p(p)e^+e^-$

*N**(1680)

• 4π

Condition	Integral QED	Integral eVMD
4π	2.59e-8	1.52e-8
oa> 9[°]		
$M_{inv}^{e^+e^-} > 0.15$		
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$		

	QED	eVMD
$BR(e^+e^-)$	1.97e-5	1.98e-5

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○ ○

 $pp \rightarrow p(p)e^+e^-$

*N**(1680)

• $4\pi + oa > 9[^{\circ}]$

Condition	Integral QED	Integral eVMD
4π	2.59e-8	1.52e-8
oa>9[°]	9.06e-9	1.02e-8
$M_{inv}^{e^+e^-} > 0.15$		
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$		

	QED	eVMD
$BR(e^+e^-)$	1.97e-5	1.98e-5

ヘロト 人間 とくほとくほとう

*N**(1680)

 $pp \rightarrow p(p)e^+e^-$

Condition	Integral QED	Integral eVMD
4π	2.59e-8	1.52e-8
oa> 9[°]	9.06e-9	1.02e-8

• 4π + oa> 9[°] + $M_{inv}^{e^+e^-}$ > 0.15[GeV/c²]

	QED	eVMD
$BR(e^+e^-)$	1.97e-5	1.98e-5

 $\in (0.84 - 1.02)$

 $M_{inv}^{e^+e^-} > 0.15$

 $M^{pe^+e^-}$

▲□▶ ▲□▶ ▲□▶ ★□▶ = 三 のへで

Motivations

 $pp \rightarrow p(n)\pi^+/pp(\pi^0)$

 $pp \rightarrow p(p)e^+e^-$

*N**(1680)

• ACC + oa > 9[°] +
$$M_{inv}^{e^+e^-}$$
 > 0.15[GeV/c²] + $M_{miss}^{pe^+e^-} \in (0.84 - 1.02)[GeV/c^2]$

Condition	Integral QED	Integral eVMD
4π	2.59e-8	1.52e-8
oa>9[°]	9.06e-9	1.02e-8
$M_{inv}^{e^+e^-} > 0.15$		
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$	7.22e-11	1.11e-10

	QED	eVMD
$BR(e^+e^-)$	1.97e-5	1.98e-5

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

 $pp \rightarrow p(p)e^+e^-$

 $\Delta(1700)$

4π

Condition	Integral QED	Integral eVMD
4π	8.89e-9	6.16e-9
oa> 9[°]		
$M_{inv}^{e^+e^-} > 0.15$		
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$		

	QED	eVMD
$BR(e^+e^-)$	1.38e-5	2.0e-5

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

 $pp \rightarrow p(p)e^+e^-$

 $\Delta(1700)$

• $4\pi + oa > 9[^{\circ}]$

Condition	Integral QED	Integral eVMD
4π	8.89e-9	6.16e-9
oa> 9[°]	3.42e-9	4.42e-9
$M_{inv}^{e^+e^-} > 0.15$		
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$		

	QED	eVMD
$BR(e^+e^-)$	1.38e-5	2.0e-5

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

 $pp \rightarrow p(p)e^+e^-$

$\Delta(1700)$

•
$$4\pi$$
 + oa> 9[°] + $M_{inv}^{e^+e^-}$ > 0.15[GeV/c²]

Condition	Integral QED	Integral eVMD
4π	8.89e-9	6.16e-9
oa>9[°]	3.42e-9	4.42e-9
$M_{inv}^{e^+e^-} > 0.15$	6.62e-9	3.68e-9
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$		

	QED	eVMD
$BR(e^+e^-)$	1.38e-5	2.0e-5

・ロト ・個ト ・ヨト ・ヨト

 $pp \rightarrow p(p)e^+e^-$

$\Delta(1700)$

• ACC + oa > 9[°] +
$$M_{inv}^{e^+e^-}$$
 > 0.15[GeV/c²] + $M_{miss}^{pe^+e^-} \in (0.84 - 1.02)[GeV/c^2]$

Condition	Integral QED	Integral eVMD
4π	8.89e-9	6.16e-9
oa>9[°]	3.42e-9	4.42e-9
$M_{inv}^{e^+e^-} > 0.15$	6.62e-9	3.68e-9
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$	3.03e-11	4.80e-11

	QED	eVMD
$BR(e^+e^-)$	1.38e-5	2.0e-5

・ロト ・個ト ・ヨト ・ヨト

 $pp \rightarrow p(p)e^+e^-$

 $\Delta(1910)$

4π

Condition	Integral QED	Integral eVMD
4π	4.04e-9	1.41e-9
oa> 9[°]		
$M_{inv}^{e^+e^-} > 0.15$		
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$		

	QED	eVMD
$BR(e^+e^-)$	0.73e-5	0.52e-5

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○ ○

 $pp \rightarrow p(p)e^+e^-$

 $\Delta(1910)$

• $4\pi + oa > 9[^{\circ}]$

Condition	Integral QED	Integral eVMD
4π	4.04e-9	1.41e-9
oa> 9[°]	1.52e-9	1.39e-9
$M_{inv}^{e^+e^-} > 0.15$		
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$		

	QED	eVMD
$BR(e^+e^-)$	0.73e-5	0.52e-5

・ロト・日本・日本・日本・日本・日本・日本

 $pp \rightarrow p(p)e^+e^-$

$$\Delta(1910)$$

•
$$4\pi$$
 + oa> 9[°] + $M_{inv}^{e^+e^-}$ > 0.15[GeV/c²]

Condition	Integral QED	Integral eVMD
4π	4.04e-9	1.41e-9
oa>9[°]	1.52e-9	1.39e-9
$M_{inv}^{e^+e^-} > 0.15$	1.0e-9	1.38e-9
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$		

	QED	eVMD
$BR(e^+e^-)$	0.73e-5	0.52e-5

 $pp \rightarrow p(p)e^+e^-$

$\Delta(1910)$

• ACC + oa > 9[°] +
$$M_{inv}^{e^+e^-}$$
 > 0.15[GeV/c²] + $M_{miss}^{pe^+e^-} \in (0.84 - 1.02)[GeV/c^2]$

Condition	Integral QED	Integral eVMD
4π	4.04e-9	1.41e-9
oa>9[°]	1.52e-9	1.39e-9
$M_{inv}^{e^+e^-} > 0.15$	1.0e-9	1.38e-9
$M_{miss}^{pe^+e^-} \in (0.84 - 1.02)$	1.62e-11	2.06e-11

	QED	eVMD
$BR(e^+e^-)$	0.73e-5	0.52e-5

ヘロト 人間 とくほとくほとう