Investigation of meson properties

with the Belle detector

#### Simon Eidelman

Budker Institute of Nuclear Physics SB RAS, and Novosibirsk State University, Novosibirsk, Russia

Outline 1. New light mesons between 2 and 3 GeV

- 2. First D state in charmonium family
- 3. New states in bottomonium
- 4. Conclusions

### Introduction

- B factories were designed to study CP violation in  $B\bar{B}$  at  $\Upsilon(4S)$
- From ARGUS and CLEO times it was known that much richer physics in other energy domains was accessible with special methods of analysis: γγ → light quark mesons, τ leptons, charm, narrow Υ
- Huge statistics collected by BaBar (~550 fb<sup>-1</sup>) and Belle (~1030 fb<sup>-1</sup>) strengthened that and resulted in principally new studies,
   e.g., γγ → cc̄, initial-state radiation to qq̄ and cc̄
- The combination of these methods/ideas led to spectacular observations in charmonium and bottomonium systems with many new states found, and to detailed studies of various mesons of light quarks
- Progress of experiment stimulated theory resulting in many models: tetraquark, hybrid, molecules, hadrocharmonium or, alternatively, effects of close thresholds, coupled channels and rescattering

$$\gamma\gamma \to \omega\phi, \ \phi\phi, \ \omega\omega \text{ at Belle} - \mathbf{I}$$

Belle used a data sample of 870 fb<sup>-1</sup> taken at  $\Upsilon(nS)$ ,  $n = 1, \ldots, 5$ , to measure cross sections of  $\gamma \gamma \to \omega \phi$ ,  $\phi \phi$ ,  $\omega \omega$ Z.Q. Liu et al., arxiv:1202.5632, PRL



In addition to charmonium signals, obvious structures are seen below 3 GeV

$$\gamma\gamma \to \omega\phi, \ \phi\phi, \ \omega\omega \text{ at Belle} - \text{II}$$

2D angular analysis for various  $J^P(0^+, 0^-, 2^+, 2^-)$  reveals a mixture of spin-0 and spin-2 components for all modes



| Mode                       | $\omega\phi$  | $\phi\phi$    | $\omega\omega$  |
|----------------------------|---------------|---------------|-----------------|
| M,  GeV                    | 2.2           | 2.35          | 1.91            |
| $\sigma_{ m peak},{ m nb}$ | $0.27\pm0.05$ | $0.30\pm0.04$ | $5.30 \pm 0.42$ |



 $\Gamma_{\gamma\gamma}\mathcal{B}(R \to VV)$  are measured with improved precision for the  $\eta_c, \ \chi_{c0}, \ \chi_{c2} \to \phi\phi,$  $\eta_c \to \omega\omega$  and upper limits for other decays to  $\omega\omega, \ \omega\phi$  are the first measurements

4-quark, t-channel factorization, one-pion exchange models fail to explain the position and height of the peaks New Charmonium State at Belle – I

Using a full data sample of  $772 \cdot 10^6 B\bar{B}$  pairs at  $\Upsilon(4S)$ Belle studies  $B^+ \to \chi_{c1} \gamma K^+$  scanning a broad mass range



A new state at 3820 MeV seen in addition to  $\psi(2S)$ ! There is no signal at 3872 MeV

## New Charmonium State at Belle – II

- There is  $4.2\sigma$  evidence for a new state at  $3823.5 \pm 2.8$  MeV
- $\mathcal{B}(B^+ \to X(3820)K^+)\mathcal{B}(X \to \chi_{c1}\gamma) = (9.7^{+2.8+1.1}_{-2.5-1.0}) \cdot 10^{-4}$
- It could be a  ${}^{3}D_{2}$  or  $\psi(1D)$  state expected at 3810-3840 MeV
- For X(3872)  $\mathcal{BB} < 1.9 \cdot 10^{-4} \Rightarrow$   $\Gamma(X(3872) \to \chi_{c1}\gamma)/\Gamma(X(3872) \to J/\psi\pi^+\pi^-) < 0.26$ setting a constraint on the C-odd partner of X(3872)

### New Charmonium(like) States from B Factories – I

| State                 | $J^{PC}$        | Process                                 |
|-----------------------|-----------------|-----------------------------------------|
| $\eta_c(2S, 3639)$    | $0^{-+}$        | $B \to K(K_S K \pi)$                    |
| $\psi(3820)$          | $2^{}$          | $B \to \chi_{c1} \gamma K$              |
| X(3872)               | $1^{++}/2^{-+}$ | $B \to K(J/\psi \pi^+ \pi^-)$           |
| G(3900)               | 1               | $e^+e^- \to \gamma(D\bar{D})$           |
| X(3915)               | $0/2^{?+}$      | $B \to K(J/\psi\omega)$                 |
| $\chi_{c2}(2P, 3927)$ | $2^{++}$        | $\gamma\gamma  ightarrow Dar{D}$        |
| X(3940)               | $?^{?+}$        | $e^+e^- \to J/\psi(D\bar{D}^*)$         |
| Y(4008)               | 1               | $e^+e^- \to \gamma (J/\psi \pi^+\pi^-)$ |
| $Z_1(4050)^+$         | ?               | $B \to K(\chi_{c1}(1P)\pi^+)$           |

# New Charmonium(like) States from B Factories – II

| State         | $J^{PC}$   | Process                                     |
|---------------|------------|---------------------------------------------|
| X(4160)       | ??+        | $e^+e^- \to J/\psi(D^*\bar{D}^*)$           |
| $Z_2(4250)^+$ | ?          | $B \to K(\chi_{c1}(1P)\pi^+)$               |
| Y(4260)       | 1          | $e^+e^- \to \gamma (J/\psi \pi^+\pi^-)$     |
| X(4350)       | $0/2^{++}$ | $\gamma\gamma  ightarrow J/\psi\phi$        |
| Y(4360)       | 1          | $e^+e^- \to \gamma(\psi(2S)\pi^+\pi^-)$     |
| $Z(4430)^+$   | ?          | $B \to K(\psi(2S)\pi^+)$                    |
| Y(4630)       | 1          | $e^+e^- \to \gamma(\Lambda_c^+\Lambda_c^-)$ |
| Y(4660)       | 1          | $e^+e^- \to \gamma(\psi(2S)\pi^+\pi^-)$     |



### Observation of $h_b(1P)$ and $h_b(2P)$ at Belle – I

- Belle used 121.4 fb<sup>-1</sup> collected near 10860 MeV to study  $\Upsilon(5S) \to X\pi^+\pi^-$ , where  $X = \Upsilon(1S, 2S, 3S)$  or really new  $b\bar{b}$  state, using missing mass to  $\pi^+\pi^-$
- In addition to  $\Upsilon(1S, 2S, 3S)$ , they observe  $3S \to 1S$  and  $2S \to 1S$  transitions,  $<< \sec >> \Upsilon(1D) \ (2.4\sigma)$  and discover  $h_b(1P)$  and  $h_b(2P)$

|   | State     | Yield, $10^3$                | Mass, MeV                       | Sign.        |
|---|-----------|------------------------------|---------------------------------|--------------|
| D | $h_b(1P)$ | $50.4 \pm 7.8^{+4.5}_{-9.1}$ | $9898.3 \pm 1.1^{+1.6}_{-1.1}$  | $5.5\sigma$  |
|   | $h_b(2P)$ | $84.4 \pm 6.8^{+23.}_{-10.}$ | $10259.8 \pm 0.6^{+1.4}_{-1.0}$ | $11.2\sigma$ |

• Belle, PRL 108, 032001 (2012)



Missing mass distribution clearly shows a variety of states with different  $J^P$ 

S.Eidelman, BINP

p.12/27

# Observation of $h_b(1P)$ and $h_b(2P)$ at Belle – III

• The hyperfine splitting  $\Delta M_{\rm HF} = \langle M(n^3 P_J) \rangle - M(n^1 P_1)$ , where  $\langle M(n^3 P_J) \rangle -$  spin-weighted average mass of the P-wave triplet states, triplet  $n^3 P_J - \chi_{bJ}(nP)$ , singlet  $n^1 P_1 - h_b(nP)$ 

|   | State                          | $h_b(1P)$     | $h_b(2P)$            |
|---|--------------------------------|---------------|----------------------|
| • | $\Delta M_{\rm HF},  { m MeV}$ | $1.6 \pm 1.5$ | $+0.5^{+1.6}_{-1.2}$ |

compared to  $0.00 \pm 0.15$  MeV for the  $h_c(1P)$ 

|   | State                                                              | $h_b(1P)$                       | $h_b(2P)$                       |
|---|--------------------------------------------------------------------|---------------------------------|---------------------------------|
| • | $\frac{\sigma(h_b(nP)\pi^+\pi^-)}{\sigma(\Upsilon(2S)\pi^+\pi^-)}$ | $0.46 \pm 0.08^{+0.07}_{-0.12}$ | $0.77 \pm 0.08^{+0.22}_{-0.17}$ |

i.e., a spin flip of the b quark is not suppressed

### Observation of Charged $Z_b(10610)$ and $Z_b(10650) - I$

- Analysis of  $\Upsilon(5S)$  decays to  $h_b(1P)\pi^+\pi^-$ ,  $h_b(2P)\pi^+\pi^$ as well as  $\Upsilon(1S)\pi^+\pi^-$ ,  $\Upsilon(2S)\pi^+\pi^-$ ,  $\Upsilon(3S)\pi^+\pi^$ shows the resonant structure in  $\Upsilon(nS)\pi$ ,  $h_b(mP)\pi - Z_b$ PRL 107, 122001 (2012)
- There are two  $Z_b$  states at 10610 MeV and 10650 MeV which both decay into  $\Upsilon(nS)\pi^{\pm}$  and  $h_b(mP)\pi^{\pm}$ , n = 1, 2, 3; m = 1, 2
- $\Upsilon(5S) \to Z_b \pi, Z_b \to \Upsilon(nS) \pi \text{ or } Z_b \to h_b(mP) \pi$
- Two  $Z_b$  states are charged and obviously exotic

| Ob                           | servation of                              | Charged $Z_b$                             | 10610) and 2                              | $Z_b(10650) - 1$                              | Ι                                         |
|------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------------|-------------------------------------------|
| Final state                  | $\Upsilon(1S)\pi^+\pi^-$                  | $\Upsilon(2S)\pi^+\pi^-$                  | $\Upsilon(3S)\pi^+\pi^-$                  | $h_b(1P)\pi^+\pi^-$                           | $h_b(2P)\pi^+\pi^-$                       |
| $M(Z_b^1), \text{ MeV}$      | $10611 \pm 4 \pm 3$                       | $10609\pm2\pm3$                           | $10608\pm2\pm3$                           | $10605 \pm 2^{+3}_{-1}$                       | $10599 {+6+5 \atop -3-4}$                 |
| $\Gamma(Z_b^1), \; { m MeV}$ | $22.3 \pm 7.7 \substack{+3.0 \\ -4.0}$    | $24.2 \pm 3.1 {+2.0 \\ -3.0}$             | $17.6 \pm 3.0 \pm 3.0$                    | $^{11.4}_{-3.9}\substack{+4.5+2.1\\-3.9-1.2}$ | $13 + 10 + 9 \\ -8 - 7$                   |
| $M(Z_b^2), \text{ MeV}$      | $10657\pm 6\pm 3$                         | $10651\pm2\pm3$                           | $10652\pm1\pm2$                           | $10654\pm3{+1\atop-2}$                        | $10651 \substack{+2+3 \\ -3-2}$           |
| $\Gamma(Z_b^2), { m MeV}$    | $16.3 \pm 9.8 \substack{+6.0 \\ -2.0}$    | $13.3 \pm 3.3 {+4.0 \\ -3.0}$             | $8.4\pm2.0\pm2.0$                         | $20.9 \substack{+5.4 + 2.1 \\ -4.7 - 5.7}$    | $19\pm7{+11\over-7}$                      |
| Rel. norm.                   | $0.57 \pm 0.21 \substack{+0.19 \\ -0.04}$ | $0.86 \pm 0.11 \substack{+0.04 \\ -0.10}$ | $0.96 \pm 0.14 \substack{+0.08 \\ -0.05}$ | $1.39 \pm 0.37 {+0.05 \\ -0.15}$              | $1.6 \substack{+0.6 + 0.4 \\ -0.4 - 0.6}$ |
| Rel. phase, $^{\circ}$       | $58 \pm 43^{+4}_{-9}$                     | $-13 \pm 13^{+17}_{-8}$                   | $-9 \pm 19^{+11}_{-26}$                   | $187 {+44+3 \atop -57-12}$                    | $181_{-105-109}^{+65+74}$                 |

Masses, widths, relative amplitudes are consistent Relative phases are swapped for  $\Upsilon$  and  $h_b$  final states

as expected in the molecular model

| State                   | $Z_b(10610)$    | $Z_b(10650)$    |
|-------------------------|-----------------|-----------------|
| $M,  {\rm MeV}$         | $10607.2\pm2.0$ | $10652.2\pm1.5$ |
| $\Gamma,  \mathrm{MeV}$ | $18.4 \pm 2.4$  | $11.5\pm2.2$    |





Probabilities at which different J<sup>P</sup> hypotheses are disfavored compared to 1<sup>+</sup>

|         |                          | $Z_b(10610)$             |                     |                          | $Z_b(10650)$             |                     |
|---------|--------------------------|--------------------------|---------------------|--------------------------|--------------------------|---------------------|
| J-      | $\Upsilon(2S)\pi^+\pi^-$ | $\Upsilon(3S)\pi^+\pi^-$ | $h_b(1P)\pi^+\pi^-$ | $\Upsilon(2S)\pi^+\pi^-$ | $\Upsilon(3S)\pi^+\pi^-$ | $h_b(1P)\pi^+\pi^-$ |
| 1-      | $3.6 \sigma$             | $0.3 \sigma$             | $0.3 \sigma$        | $3.7 \sigma$             | $2.6 \sigma$             | $2.7 \sigma$        |
| $2^{+}$ | $4.3 \sigma$             | $3.5 \sigma$             | 4.9 -               | $4.4 \sigma$             | $2.7 \sigma$             | 0.1 -               |
| $2^{-}$ | $2.7 \sigma$             | $2.8 \sigma$             | $4.3\sigma$         | $2.9 \sigma$             | $2.6 \sigma$             | 2.1σ                |

1+ assignment is favorable. 1-, 2+ ,2- are disfavored at typically 3σ level.

S.Eidelman, BINP

p.17/27

1

### What do we know about the $\eta_b(1S)$ ?

- First claim from ALEPH in 2002 in 200 GeV  $e^+e^-$  at  $9300 \pm 20 \pm 20$  MeV
- First observations by BaBar (2008, 2009) and CLEO (2010) in  $\Upsilon(2S, 3S) \rightarrow \eta_b(1S)\gamma$
- World-average mass  $M(\eta_b(1S)) = 9390.9 \pm 2.8 \text{ MeV} \Rightarrow$ Hyperfine mass splitting  $\Delta M_{\rm hf} = M(\Upsilon(1S)) - M(\eta_b(1S)) = 69.3 \pm 2.8 \text{ MeV}$ , compared to  $41 \pm 14$  MeV in pNRQCD and  $60 \pm 8$  MeV on the lattice
- No measurements of its width exist
- It is tempting to search for  $h_b(nP) \rightarrow \eta_b(mS)\gamma$ with 50k of  $h_b(1P)$  and 84k of  $h_b(2P)$  at Belle for which theory predicts sizable branchings
- Belle did that first with 121.4 fb<sup>-1</sup> and observed the  $\eta_b(1S)$  (arxiv:1110.3934), then the analysis of the full data sample of 133.4 fb<sup>-1</sup> gave first evidence for the  $\eta_b(2S)$ !, arxiv:1205.6351, submitted to PRL

# Method – I

- Decay chain  $\Upsilon(5S) \to Z_b^+ \pi^ \hookrightarrow h_b(nP)\pi^+$  $\hookrightarrow \eta_b(mS)\gamma$
- We reconstruct  $\pi^-$ ,  $\pi^+$ ,  $\gamma$  and use missing masses to identify signal
- Missing mass to π<sup>-</sup> is M(Z<sub>b</sub><sup>+</sup>), missing mass to π<sup>+</sup>π<sup>-</sup> is M(h<sub>b</sub>), and missing mass to π<sup>+</sup>π<sup>-</sup>γ is M(η<sub>b</sub>)
- $\Delta M_{\rm miss}(\pi^+\pi^-\gamma) \equiv M_{\rm miss}(\pi^+\pi^-\gamma) M_{\rm miss}(\pi^+\pi^-) + M(h_b)$
- We fit  $M_{\rm miss}(\pi^+\pi^-)$  spectra in  $\Delta M_{\rm miss}(\pi^+\pi^-\gamma)$  bins



In the ideal world all events group in the center, in reality there is resolution as well as background  $\pi$  and  $\gamma$ The horizontal band for  $\Delta M_{\text{miss}}(\pi^+\pi^-\gamma)$  corresponds to  $\eta_b$ , true  $\gamma$  and bg  $\pi^+\pi^-$ The vertical band for  $M_{\text{miss}}(\pi^+\pi^-)$  corresponds to  $h_b$ , true  $\pi^+\pi^-$  and bg  $\gamma$  Results with the Full  $\Upsilon(5S)$  Sample – I

Using 133.4 fb<sup>-1</sup> and this method, Belle updates results on the  $\eta_b(1S)$  and reports first evidence for the  $\eta_b(2S)$ , We also update  $h_b(1P)$  and  $h_b(2P)$  mass measurements



 $\pi\pi$  transitions in the  $h_b(1P)$  region:  $\Upsilon(5S) \rightarrow h_b(1P), \ \Upsilon(3S) \rightarrow \Upsilon(1S),$  $\Upsilon(5S) \rightarrow \Upsilon(2S)$ 

 $\pi\pi$  transitions in the  $h_b(2P)$  region:  $\Upsilon(5S) \to \Upsilon(1D), \ \Upsilon(5S) \to h_b(2P),$  $\Upsilon(2S) \to \Upsilon(1S), \ \Upsilon(5S) \to \Upsilon(3S)$ 





 $h_b(1P) \rightarrow \eta_b(1S)\gamma$  $(23.5 \pm 2.0) \cdot 10^3$  events

 $h_b(2P) \rightarrow \eta_b(1S)\gamma$  $(10.3 \pm 1.3) \cdot 10^3$  events

 $h_b(2P) \rightarrow \eta_b(2S)\gamma$  $(25.8 \pm 4.9) \cdot 10^3$  events

A simultaneous fit of  $h_b(1P) \to \eta_b(1S)$  and  $h_b(2P) \to \eta_b(1S)!$ 

# Results with the Full $\Upsilon(5S)$ Sample – III

| State        | Mass, MeV                      | Width, MeV                   | $\Delta M_{\rm hf},  { m MeV}$ |
|--------------|--------------------------------|------------------------------|--------------------------------|
| $\eta_b(1S)$ | $9402.4 \pm 1.5 \pm 1.8$       | $10.8^{+4.0+4.5}_{-3.7-2.0}$ | $57.9\pm2.3$                   |
| $\eta_b(2S)$ | $9999.0 \pm 3.5^{+2.8}_{-1.9}$ | < 24                         | $24.3^{+4.0}_{-4.5}$           |
| $h_b(1P)$    | $9899.1 \pm 0.4 \pm 1.0$       | _                            | $0.8 \pm 1.1$                  |
| $h_b(2P)$    | $10259.8 \pm 0.5 \pm 1.1$      |                              | $0.5 \pm 1.2$                  |

Branching fractions of  $h_b(nP) \rightarrow \eta_b(mS)$  transitions

| $\mathcal{B},\%$ | $1P \rightarrow 1S$          | $2P \rightarrow 1S$          | $2P \rightarrow 2S$           |
|------------------|------------------------------|------------------------------|-------------------------------|
|                  | $49.2 \pm 5.7^{+5.6}_{-3.3}$ | $22.3 \pm 3.8^{+3.1}_{-3.3}$ | $47.5 \pm 10.5^{+6.8}_{-7.7}$ |

# Summary on the $\eta_b(1S)$

| Quantity                                        | Belle, 2012                  | PDG, 2011      | Theory          |
|-------------------------------------------------|------------------------------|----------------|-----------------|
| Mass, MeV                                       | $9402.4 \pm 1.5 \pm 1.8$     | $9390.9\pm2.8$ | _               |
| $\Delta M_{\rm hf},  { m MeV}$                  | $57.9 \pm 2.3$               | $69.3\pm2.8$   | 40-60, Latt.    |
| Width, MeV                                      | $10.8^{+4.0+4.5}_{-3.7-2.0}$ | _              | 4-20, Potential |
| $\mathcal{B}(h_b(1P) \to \eta_b(1S)\gamma), \%$ | $49.2 \pm 5.7^{+5.6}_{-3.3}$ | _              | 41 (GR, 2002)   |

Belle Collaboration, arXiv:1205.6351, submitted to PRL



# Summary on the $\eta_b(2S)$

| Quantity                                        | Belle, 2012                    | PDG, 2011 | Theory                    |
|-------------------------------------------------|--------------------------------|-----------|---------------------------|
| Mass, MeV                                       | $9999.0 \pm 3.5^{+2.8}_{-1.9}$ | —         | _                         |
| $\Delta M_{ m hf},~{ m MeV}$                    | $24.3^{+4.0}_{-4.5}$           | —         | $23.5 \pm 4.7$ , Latt.    |
| Width, MeV                                      | < 24                           | —         | $4.1 \pm 0.7$ , Potential |
| $\mathcal{B}(h_b(2P) \to \eta_b(2S)\gamma), \%$ | $47.5 \pm 10.5^{+6.8}_{-7.7}$  | _         | 19 (GR, 2002)             |

Belle Collaboration, arXiv:1205.6351, submitted to PRL

### Conclusions

- Huge data samples collected at B factories
   together with various methods of analysis give access
   to rare processes in e<sup>+</sup>e<sup>-</sup> annihilation, γγ, B and Υ(5S) decays
- Many new mesons of light and heavy quarks were discovered, some expected and many with surprising or even exotic properties
- Impressive progress in the charmonium family studies, about 20 new mesons observed, but 2-3 only understood
- In many cases detailed analysis of  $X_{c\bar{c}}$  is limited by statistics, a breakthrough expected at Super*B*-factories, PANDA and LHC
- Various new states in the  $b\bar{b}$  family:  $\eta_b(1S), \ \eta_b(2S), \ h_b(1P), \ h_b(2P), Z_b(10610), \ Z_b(10650)$
- Theoretical interpretation is very far from final and new interesting experimental observations coming





#### Particle Production at B Factories

Production from B-decay (broad  $D^{**}$ ,  $D_{sJ}$ , X(3872), Y(3940))

Production from continuum  $(D_{sJ}, \eta_c(2S), X(3940), \Sigma(2800))$ 

Two-photon production  $(\eta_c(2S), \chi_{c2}(2P))$ 

Initial state radiation (Y(4260), Y(4360), Y(4660))



 $\eta_b(1S)$  and  $\eta_b(2S)$  from CLEO Data – I

Based on 20.9M  $\Upsilon(1S)$  and 9.3  $\Upsilon(2S)$  decays from CLEO data the group of K. Seth looks for  $\eta_b(1, 2S)$  in  $\Upsilon(nS) \to \eta_b(nS)\gamma, \ \eta_b(nS) \to X$ 



# $\eta_b(1S)$ and $\eta_b(2S)$ from CLEO Data – II

| State        | Events               | Mass, MeV                | $\Delta M_{ m HF}$     | Sign., $\sigma$ |
|--------------|----------------------|--------------------------|------------------------|-----------------|
| $\eta_b(1S)$ | $10.3^{+4.9}_{-4.1}$ | $9393.2 \pm 3.4 \pm 2.3$ | $67.1 \pm 3.4 \pm 2.3$ | 3.1             |
| $\eta_b(2S)$ | $11.4^{+4.3}_{-3.5}$ | $9974.6 \pm 2.3 \pm 2.1$ | $48.7 \pm 2.3 \pm 2.1$ | 4.9             |

arxiv:1204.4205 – 5 authors only use CLEO data!

# $\eta_b(1S)$ and $\eta_b(2S)$ from CLEO Data – III

| Group   | State        | Events               | Mass, MeV                      | $\Delta M_{ m HF}$     | Sign., $\sigma$ |
|---------|--------------|----------------------|--------------------------------|------------------------|-----------------|
| K. Seth | $\eta_b(1S)$ | $10.3^{+4.9}_{-4.1}$ | $9393.2 \pm 3.4 \pm 2.3$       | $67.1 \pm 3.4 \pm 2.3$ | 3.1             |
| Belle   | _            | $(23.5 \pm 2.0)k$    | $9402.4 \pm 1.5 \pm 1.8$       | $57.9\pm2.3$           | 15              |
| _       | _            | $(10.3 \pm 1.3)k$    | _                              | _                      | 9               |
| K. Seth | $\eta_b(2S)$ | $11.4^{+4.3}_{-3.5}$ | $9974.6 \pm 2.3 \pm 2.1$       | $48.7 \pm 2.3 \pm 2.1$ | 4.9             |
| Belle   |              | $(25.8 \pm 4.9)k$    | $9999.0 \pm 3.5^{+2.8}_{-1.9}$ | $24.3^{+4.0}_{-4.5}$   | 4.2             |

## Observation of $\Upsilon(1D)$ at Belle – I

- A  $1^3 D_J$  triplet is expected,  $J = 1, 2, 3; \Gamma \sim 30$  keV,  $\Delta M \sim 10$  MeV
- Discovered by CLEO, Phys. Rev. D 70, 032031 (2004) with  $10.2\sigma$
- BaBar, Phys. Rev. D 82, 111102 (2010) with 5.8 $\sigma$ ;  $\Upsilon(3S) \rightarrow \gamma \chi_{bJ'}(2P), \ \chi_{bJ'}(2P) \rightarrow \gamma \Upsilon(1^3 D_J), \ \Upsilon(1S)\pi^+\pi^-$
- Belle uses  $\Upsilon(5S) \to \Upsilon(1D)\pi^+\pi^-, \Upsilon(1D) \to \chi_b(1P)\gamma, \chi_b(1P) \to \Upsilon(1S)\gamma$





### Comparison with Theory

In the non-relativistic approximation the spin-spin interaction  $\propto |\psi(0)|^2$ . Then  $\Delta M_{\rm HF}(nP) = 0$  in agreement with  $0.8 \pm 1.1$  and  $0.5 \pm 1.2$  MeV

$$\Delta M_{\rm HF}(2S) = \Delta M_{\rm HF}(1S) \frac{\Gamma_{ee}[\Upsilon(2S)]}{\Gamma_{ee}[\Upsilon(1S)]} = (26.5 \pm 1.2) \text{ MeV} \qquad 24.3^{+4.0}_{-4.5} \text{ MeV}$$

$$\Gamma[\eta_b(2S)] = \Gamma[\eta_b(1S)] \frac{\Gamma_{ee}[\Upsilon(2S)]}{\Gamma_{ee}[\Upsilon(1S)]} = (4.9^{+2.7}_{-1.9}) \text{ MeV} < 24 \text{ MeV}$$

# Observation of $\Upsilon(1D)$ at Belle



 $\Upsilon(1S)[\mu^+\mu^-]\pi^+\pi^-\gamma\gamma \text{ final state}$ Three peaks in  $MM(\pi^+\pi^-)$ :  $\Upsilon(2S)\pi^+\pi^ \Upsilon(1D)\pi^+\pi^ \Upsilon(2S)[\Upsilon(1S)\pi^+\pi^-]\eta[\gamma\gamma]$ 

 $\mathcal{B}(\Upsilon(5S) \to \Upsilon(1D)\pi^+\pi^-)\mathcal{B}(\Upsilon(1D) \to \chi_b(1P)\gamma \to \Upsilon(1S)\gamma\gamma) = (2.0 \pm 0.4 \pm 0.3) \cdot 10^{-4} \quad 9\sigma \text{ sign.}!$ 

# $\eta$ Transitions in Bottomonium

- $\eta$  and  $\pi^0$  transitions in bottomonium are important for theory, between  $1^{--} b\bar{b}$  spin flip of the *b*, scaling as  $1/m_b$
- From  $\psi(2S) \to \eta J/\psi \ \mathcal{B}(\Upsilon(2S) \to \eta \Upsilon(1S)) \sim 8 \cdot 10^{-4}$
- For  $\pi^0 \ \Gamma(\Upsilon(2S) \to \pi^0 \Upsilon(1S)) 0.16 \Gamma(\Upsilon(2S) \to \eta \Upsilon(1S))$
- From BaBar and CLEO, branchings are either unexpectedly large  $(\Upsilon(4S))$  or too small  $(\Upsilon(2S) \text{ and } \Upsilon(3S))$



p.40/27





# Observation of $\Upsilon(5S) \to \Upsilon(1, 2S)\eta - \Pi$

Three modes:

- $\Upsilon(5S) \to \Upsilon(1,2S)\eta, \ \Upsilon(1,2S) \to \mu^+\mu^-, \ \eta \to \pi^+\pi^-\pi^0$
- $\Upsilon(5S) \to \Upsilon(2S)\eta, \ \Upsilon(2S) \to \Upsilon(1S)\pi^+\pi^-, \ \Upsilon(1S) \to \mu^+\mu^-, \ \eta \to \gamma\gamma$
- $\Upsilon(5S) \to \Upsilon(1S)\eta', \ \Upsilon(1S) \to \mu^+\mu^-, \ \eta' \to \eta\pi^+\pi^-$

Results on the branching fractions:

- $\mathcal{B}(\Upsilon(5S) \to \Upsilon(1S)\eta) = (7.3 \pm 1.6 \pm 0.8) \cdot 10^{-4}$
- $\mathcal{B}(\Upsilon(5S) \to \Upsilon(2S)\eta) = (38 \pm 4 \pm 5) \cdot 10^{-4}$
- $\mathcal{B}(\Upsilon(5S) \to \Upsilon(1S)\eta') < 1.2 \cdot 10^{-4}$

# Observation of $\Upsilon(1D)$ at Belle – I

- A  $1^3 D_J$  triplet is expected,  $J = 1, 2, 3; \Gamma \sim 30$  keV,  $\Delta M \sim 10$  MeV
- Discovered by CLEO, Phys. Rev. D 70, 032031 (2004) with  $10.2\sigma$
- BaBar, Phys. Rev. D 82, 111102 (2010) with 5.8 $\sigma$ ;  $\Upsilon(3S) \rightarrow \gamma \chi_{bJ'}(2P), \ \chi_{bJ'}(2P) \rightarrow \gamma \Upsilon(1^3 D_J), \ \Upsilon(1S)\pi^+\pi^-$
- Belle uses  $\Upsilon(5S) \to \Upsilon(1D)\pi^+\pi^-, \Upsilon(1D) \to \chi_b(1P)\gamma, \chi_b(1P) \to \Upsilon(1S)\gamma$

# Observation of $\Upsilon(1D)$ at Belle



 $\Upsilon(1S)[\mu^+\mu^-]\pi^+\pi^-\gamma\gamma \text{ final state}$ Three peaks in  $MM(\pi^+\pi^-)$ :  $\Upsilon(2S)\pi^+\pi^ \Upsilon(1D)\pi^+\pi^ \Upsilon(2S)[\Upsilon(1S)\pi^+\pi^-]\eta[\gamma\gamma]$ 

 $\mathcal{B}(\Upsilon(5S) \to \Upsilon(1D)\pi^+\pi^-)\mathcal{B}(\Upsilon(1D) \to \chi_b(1P)\gamma \to \Upsilon(1S)\gamma\gamma) = (2.0 \pm 0.4 \pm 0.3) \cdot 10^{-4} \quad 9\sigma \text{ sign.}!$ 

# $\eta$ Transitions in Bottomonium

- $\eta$  and  $\pi^0$  transitions in bottomonium are important for theory, between  $1^{--} b\bar{b}$  spin flip of the *b*, scaling as  $1/m_b$
- From  $\psi(2S) \to \eta J/\psi \ \mathcal{B}(\Upsilon(2S) \to \eta \Upsilon(1S)) \sim 8 \cdot 10^{-4}$
- For  $\pi^0 \ \Gamma(\Upsilon(2S) \to \pi^0 \Upsilon(1S)) 0.16 \Gamma(\Upsilon(2S) \to \eta \Upsilon(1S))$
- From BaBar and CLEO, branchings are either unexpectedly large  $(\Upsilon(4S))$  or too small  $(\Upsilon(2S) \text{ and } \Upsilon(3S))$



p.46/27





# Observation of $\Upsilon(5S) \to \Upsilon(1, 2S)\eta - \Pi$

Three modes:

- $\Upsilon(5S) \to \Upsilon(1,2S)\eta, \ \Upsilon(1,2S) \to \mu^+\mu^-, \ \eta \to \pi^+\pi^-\pi^0$
- $\Upsilon(5S) \to \Upsilon(2S)\eta, \ \Upsilon(2S) \to \Upsilon(1S)\pi^+\pi^-, \ \Upsilon(1S) \to \mu^+\mu^-, \ \eta \to \gamma\gamma$
- $\Upsilon(5S) \to \Upsilon(1S)\eta', \ \Upsilon(1S) \to \mu^+\mu^-, \ \eta' \to \eta\pi^+\pi^-$

Results on the branching fractions:

- $\mathcal{B}(\Upsilon(5S) \to \Upsilon(1S)\eta) = (7.3 \pm 1.6 \pm 0.8) \cdot 10^{-4}$
- $\mathcal{B}(\Upsilon(5S) \to \Upsilon(2S)\eta) = (38 \pm 4 \pm 5) \cdot 10^{-4}$
- $\mathcal{B}(\Upsilon(5S) \to \Upsilon(1S)\eta') < 1.2 \cdot 10^{-4}$

# $Z(3930) \text{ or } \chi_{c2}(2P) - I$



Discovered by Belle and confirmed by BaBar, both in  $\gamma\gamma \to D^0 \bar{D}^0$ ,  $D^+ D^ \mathcal{B}(D^+ D^-)/\mathcal{B}(D^0 \bar{D}^0) \sim 0.89$ Angular analysis  $\Rightarrow$  spin=2 Originally Z(3930), all properties like of the  $\chi_{c2}(2P)$ , mass 50 MeV below

# $Z(3930) \text{ or } \chi_{c2}(2P) - \text{II}$

| Group | Mass, MeV                | Width, MeV             | $\Gamma_{\gamma\gamma}\mathcal{B}_{D\bar{D}}, \mathrm{keV}$ | Events      |
|-------|--------------------------|------------------------|-------------------------------------------------------------|-------------|
| Belle | $3929 \pm 5 \pm 2$       | $29\pm10\pm2$          | $0.18 \pm 0.05 \pm 0.03$                                    | 64          |
| BaBar | $3926.7 \pm 2.7 \pm 1.1$ | $21.3 \pm 6.8 \pm 3.6$ | $0.24 \pm 0.05 \pm 0.04$                                    | $76 \pm 17$ |

BellePRL 96, 082003 (2006)BaBarPRD 81, 092003 (2010)

### Y(3945) at Belle and BaBar – I



 $B \rightarrow Y(3945)K, \ Y(3945) \rightarrow \omega J/\psi$ 

# Y(3945) at Belle and BaBar – II

| Group | Mass, MeV                  | Width, MeV            | Process                               | Ref. |
|-------|----------------------------|-----------------------|---------------------------------------|------|
| Belle | $3943 \pm 11 \pm 13$       | $87 \pm 22 \pm 26$    | $B  ightarrow \omega J/\psi K$        | 1    |
| BaBar | $3919.1^{+3.8}_{-3.5}\pm2$ | $31^{+10}_{-8} \pm 2$ | $B  ightarrow \omega J/\psi K$        | 2    |
| Belle | $3915 \pm 3 \pm 2$         | $17 \pm 10 \pm 3$     | $\gamma\gamma ightarrow\omega J/\psi$ | 3    |

- 1 Belle PRL 94, 182002 (2005)
- 2 BaBar PRD 82, 011101 (2010)
- 3 Belle PRL 104, 092001 (2010)
  - $J^P$  unknown, but  $\omega J/\psi \to C = +1$ , may be the same state as  $\chi_{c2}(2P)$



| Systematic uncertain  | ties on $M_{X(3872)}$ at LHCb |                         |
|-----------------------|-------------------------------|-------------------------|
| Group                 | Source                        | $\sigma_M,\mathrm{keV}$ |
| Mass fit:             | Natural width                 | 10                      |
|                       | Rad. tail                     | 20                      |
|                       | Resolution                    | 10                      |
|                       | Background model              | 20                      |
| Momentum calibration: | Average scale                 | 100                     |
|                       | $\eta$ dependence             | 30                      |
| Detector description: | Energy loss                   | 50                      |
| Detector alignment    | Track slopes                  | 10                      |
|                       | Total                         | 120                     |

# Confirmation of X(3872) at CDF



S.Eidelman, BINP

p.55/27

May 31, 2012



Search for Charmonium(like) States in  $\Upsilon(1S)$  Decays – I

Belle searched for  $\Upsilon(1S) \to R\gamma$  using  $102 \times 10^6 \ \Upsilon(1S)$  events



| Upper Limits on $\mathcal{B}(\Upsilon(1S) \rightarrow$ | $R\gamma$ ) at 90%CL     |
|--------------------------------------------------------|--------------------------|
| State (R)                                              | $\mathcal{B}_R, 10^{-5}$ |
| $\chi_{c0}~(J/\psi\gamma)$                             | 65                       |
| $\chi_{c1}  \left( J/\psi \gamma  ight)$               | 2.3                      |
| $\chi_{c2}\left(J/\psi\gamma ight)$                    | 0.76                     |
| $\eta_c \ (5 \ \text{modes})$                          | 5.7                      |
| $X(3872) \to \pi^+ \pi^- J/\psi$                       | 0.16                     |
| $X(3872) \to \pi^+ \pi^- \pi^0 J/\psi$                 | 0.28                     |
| $X(3915) \rightarrow \omega J/\psi$                    | 0.30                     |
| $Y(4140) \rightarrow \phi J/\psi$                      | 0.22                     |

Similar analysis is in progress for  $158 \times 10^6 \Upsilon(2S)$  events















S.Eidelman, BINP

p.63/27