Elementary reactions studied with HADES: a hadron landscape

Laura Fabbietti for the HADES Collaboration

The Good-Old Chiral Condensate

How are the hadron properties connectected to the chiral condensate?

There are several scenarios.. 2 examples:

Brown-Rho scaling PRL 1989, 1991 $m^* \approx m \left[\left\langle \overline{q}q^* \right\rangle / \left\langle \overline{q}q \right\rangle \right]^{\prime\prime}$

T. Hatsuda / S. Lee: QCD sum rules PRC46(1992)R34 $m^* = m(1 - \alpha \rho^* / \rho)$

Even looking at In+In Collisions at 168 AGeV, it looks like the vector meson properties are mainly due to hadronic interaction and might not have much to do with Chiral Symmetry Restauration... ③ What about the excesses seen in our energy regime? HADES PRC84(2011)014902

The Fuss with Neutron Stars

Kaon condensation in neutron stars? -> extract the K⁻ - Nucleus potential to test hypotheses.

Meanwhile: Neutron stars are TOO HEAVY to contemplate kaon condensate but maybe Hyperons still stand a chance?

We can start with ρ_0 for Λ (p+p, p+Nb reactions) Then move to 2-3 ρ_0 for Λ and Ξ (Au+Au, Ag+Ag)

General Strategy

Dileptons:

Understand elementary collisions (p+p, p+n) <u>in detail</u>

Use the experimental data from p+p and p+n to build a cocktail and compare with C+C, Ar+KCl, Au+Au <u>NOT TO BE completely dependent</u> <u>from transport models</u>

Evaluate Excesses: Do they also have only a ,hadronic' nature??

<u>Strange Hadrons</u> (K_{S}^{0} , K^{+} , K^{-} , ϕ , Λ , Σ , Ξ):

Scattering length in cold nuclear matter: compare differential distributions in p+p and p+Nb

Compare transport to elementary system and then move to heavier system The " $\Lambda(1405)$ puzzle"

Stage:

p+p, p+n at 1.25 GeV, p+p, p+Nb at 3.5 GeV measured with HADES at GSI, SIS18

N+N reference (I): e⁺e⁻ in p+p

Important source: $\Delta \rightarrow pe^+e^-$ Dalitz decay

HADES: PLB690 (2010)118

Time Like (q² >0) Δ (J=3/2) -> N (J=1/2) γ^* transition

$$\frac{\mathrm{d}\Gamma(\Delta \to \mathrm{Ne^+e^-})}{\mathrm{d}q^2} = f\left(m_{\varDelta}, q^2\right) \left(\left|G_{M}^2(q^2) + 3\left|G_{R}^2(q^2) + \frac{q^2}{2m_{\varDelta}^2}\right| G_{C}^2(q^2) \right| \right)$$

p+p@1.25 GeV

G(q²)? el. Transition Form Factors : extented baryon structure !

Calculations: Krivoruchenko et al. PRD 65 (**2001**) 017502 G. Ramalho and T. *Pena arxiv:* 1205.2575v1 (2012) F. Dohrmann et al., Eur. Phys. J. A 45, 401 (2010)

At this low energy the form factor effects do not show themselves!

N+N reference (II): e⁺e⁻ in n+p

calculations: R. Shyam and U. Mosel *Phys. Rev. C* 82:062201, 2010 data: HADES

p+p/n@1.25 GeV

- η production fixed by COSY, WASA data
- Bremsstrahlung pn→pne+e- (non resonant), why it is so much different from pp?
 R. Shyam and U. Mosel Phys. Rev. C 82:062201, 2010
 charge pion exchange & pion eFormFactor

for example:

PWA Analysis

M. Gumberidze Freitag B1

K.N. Ermakov et al. Eur. Phys. J. A47 (2011) 159

 $p + p \xrightarrow{1.25 GeV} n + p + \pi^+ \Delta(1232)$ N, P11(1440)N, $\pi(NN)$

Fixing resonance contribution via exclusive channels

p+p@3.5 GeV

✓ Resonances cross-sections taken from the fit the hadron spectra

✓ R→Ne⁺e⁻ constant eTFF

M. Zetenyi et. al. Heavy Ion Phys. 17 (2003) 27

✓ no off shell coupling to VM \rightarrow lower limit for e⁺e⁻ emission

 \checkmark experimental σ for ω/ρ used

missing yield related to low mass resonances and off shell VM !

p+p@ 3.5 GeV and GiBUU

p + p at 3.5 GeV

J. Weil, H. van Hees, U. Mosel arxiv:1203.3557v1

 $\label{eq:action} \begin{array}{l} & \Delta \mbox{ Form factor} \\ & \mbox{ Baryon-resonances contributing to } \rho \\ & \mbox{ production} \end{array}$

But p+p and p+n at 1.25 GeV are not reproduced

PDG Entry 2012: BR($\eta\text{->}e^+e^-\text{)} < (4.9 + 0.7 - 1.2)x10^{-6}$ with 90% CL

Vector mesons in cold matter experiments

data for momenta larger 0.8 GeV/c

<u>First measurement of moment</u> smaller 0.8 GeV/c <u>Excess below the VM pole</u>

Transition Form Factors? Secondary reactions? $\pi + N \rightarrow \Delta(1720,...)N * (1520,...) \rightarrow Ne^+e^-$ In medium modification of the ρ ?

Nuclear Modification Factor

p+p/Nb@3.5 GeV

Rise in all invariant mass regions for low P_{ee} : ->Secondary particle production

Absorption stronger than feeding from secondary collisions for $\boldsymbol{\omega}$ mesons

$$N_{e^+e^-} \propto \Gamma_{e^+e^-} \tau_{meson} \propto \frac{\Gamma_{e^+e^-}}{\Gamma_{tot}}$$
$$\Gamma_{tot} = \Gamma_{vac} + \Gamma_{coll}$$

Two aspects of in medium modifications: Absorption of particle like states (ω) and modification of the remaining dielectron shape in the invariant mass spectra!cent

M. Lorenz Friday A2

K-N Scattering in nuclear matter

E. Friedman, A. Gal. Phys. Rept. 452 (2007) 89.

Number of mechanisms proposed to explain the difference:

• Swelling of nucleons in nuclear matter. P.B. Siegel et al. Phys. Rev. C 31 (1985) 2184.

• Modification of exchanged vector mesons. G.E. Brown et al. Phys. Rev. Lett. 60 (1988) 2723.

• Meson exchange-current contribution. M.F. Jiang et al. Phys. Rev. C. 46 (1992) 6.

• In-medium formation of the Θ^+ pentaquark: $KNN \rightarrow \Theta^+N$. A. Gal et al. Phys. Rev. Lett. 94 (2005) 072301. L. Tolos et al. Phys. Lett. B 632 (2006) 219.

Nuclear Modification Factor for K⁰_S

Qualitative agreement. Hints of larger rescattering in data. The comparison of the experimental data with the transport model should deliver info about the K-N scattering at $\rho 0$

Momentum Distribution of K_{S}^{0} in p+p

GiBUU Code tuned on the p+p reaction to have a reference

Momentum Distribution of K⁰_S in p+Nb

Idea: Repulsive K⁰_s-Nucleus Potential should be visible in the momentum distribution as a shift tolarger momenta p+Nb@3.5 GeV

Systematic Overshoot of the GiBUU at low $p_t \rightarrow$? Effect of the potential

Antikaon-Nucleon Interaction

 \blacktriangleright $\Lambda(1405)$ is crucial for understanding of the free and in-medium KN interaction.

- Predicted as a KN bound state.
- Within coupled channel approach generated as a KN bound state and a $\Sigma\pi$ resonance.

Strategy in p+p 3.5 GeV:

- 1. Analyse the $\Sigma(1385)^+$.
- 2. Find the $\Sigma(1385)^0$ contribution.
- 3. Extract the $\Lambda(1405)$ signal.

$\Sigma(1385)^+$ in p+p Collisions

Phys. Rev. C 85, 035203 (2012).

Extraction of the precise line shape for the first time in p+p reactions The angular distributions suggest that around 30% of the $\Sigma(1385)$ yields stems from the decay of a Δ ++

$\Sigma(1385)^0$ Contribution

Separation of $\Sigma^0(1385)$ and $\Lambda(1405)$ possible. $\Sigma^0(1385)$ cross section is found to be 6±2 µb.

$\Lambda(1405)$ in p+p Collisions

Efficiency and Acceptance corrected data Example of incoherent sum of different channels that can reproduce the data assuming a SHIFT of the pole Mass for the $\Lambda(1405)$ to 1385 MeV/c²

Striking: different reaction<->different line-shapes

Moss of Z # # #

(MeV/c²)

Oppurtunity with the pion beam program: $\Lambda(1405)$ with HADES for 2 different reactions

What comes next

$\Lambda(1405)$ in π -induced reactions

$$\pi + p \xrightarrow{1.62GeV} \Lambda(1405) + K_s^0$$

$$\sum_{i=1}^{0} \Sigma^0 + \pi^0$$

$$\sum_{i=1}^{0} \Lambda + \gamma$$

$$\sum_{i=1}^{0} p + \pi^-$$

φ In Medium

$$T_Z = \frac{\sigma_{\pi^- A \to \phi X}}{Z^{\alpha} \sigma_{\pi^- p \to \phi X}}$$

 $\Lambda(1405)$ Absorption in different target

 $\pi^- + Pb \rightarrow \Lambda(1405) + \dots$

K- absorption Measurement

 $2\omega U_{K^{-}A} = -4\pi \Big[f_{K^{-}p} \rho_p + f_{K^{-}n} \rho_n \Big] + 2\omega U_{abs} + \dots$ $f_{K^{-}p} \text{ scattering length} \rightarrow \text{ from kaonic atoms}$ $U_{abs} K^{-} \text{ absorption potential on Nucleus}$

Experiments with Pions

(HADES) Nucl. Instr. Meth. A 618 121 (210)

Summary

p+p @1.25 GeV under control, PWA Analysis should improve the quantitative knowledge of the Resonance contribution
p+p @ 3.5 GeV: η -> PDG © Excess at intermediate Masses ? D Form Factor? Resonances associated to ρ and ω production?
Extend the PWA analysis in p+p to 2pion FS
Σ(1385)+ : precise determination of the spectral shape .> PDG
Λ(1405) in p+p @ 3.5 GeV: Pole Mass shifted to 1385 MeV/c² !!

p+Nb/p+p:

- slow omegas absorbed in nuclear matter: data ready for interpretation
- K0s scattering length in nuclear matter can be extracted
- Λ scatterings legnth will be studied as well
- Momentum analysis for $K^{0}s$ (almost done) and Λ (in progress) can deliver info about the potential in nuclear matter.

HADES Calorimeter

