

Precision measurement of the η meson mass at COSY-ANKE

Paul Goslawski

Westfälische Wilhelms-Universität Münster

on behalf of the ANKE collaboration

June 4th, 2012 Meson 2012, Krakow

Outline

Introduction

Measuring method at COSY-ANKE using the reaction $dp
ightarrow {}^3\mathrm{He}\,\eta$

Beam momentum determination

Final state momentum determination

COSY-ANKE η mass result

History of the PDG value of the η meson mass

Current PDG η mass value: (547.853 \pm 0.024) MeV/c²

Current situation of the η meson mass

Experimental	Measuring	η mass		
Facility	Method	(MeV/c^2)		
MAMI-CB ***	Photoprod.	547.851		
DAFNE-KLOE	Invariant Mass	547.874		
CESR-CLEO	Invariant Mass	547.785		
COSY-GEM	MM: $\mathit{pd} ightarrow {}^3 extsf{He}\eta$	547.311		
CERN-NA48	Invariant Mass	547.843		
MAMI-TAPS	Photoprod.	547.120		
SATURNE	MM: ${\it dp} ightarrow { m ^3He}\eta$	547.300		
Ruth. Lab.	Missing Mass	547.450		
Precision: $\Delta m < 50 \mathrm{keV}/c^2$				
Precision: $\Delta m_n < 50 \mathrm{keV/c^2}$				

Different measuring methods result in different η mass values

"Reason for disagreement: Reaction $dp ightarrow {}^3 ext{He}\,\eta$ "

Ideas / Speculations:

- Strong ${}^{3}\text{He}\,\eta$ FSI ightarrow Indication for a $\eta\,{}^{3}\text{He}$ quasi-bound state
- ► Coupling of ${}^{3}\text{He}\eta \leftrightarrow {}^{3}\text{He}\pi\pi$ can disturb the multipion background near the η position \rightarrow Wrong identification of the η mass

Determination of the η mass at COSY-ANKE The $dp \rightarrow {^3{\rm He}}\,\eta$ reaction at COSY-ANKE

- ANKE: internal fixed target experiment with a cluster-jet target
- ³He nuclei are detected in the forward-system
- ► Full geometrical acceptance for the reaction $dp \rightarrow {}^{3}\text{He}\,\eta$ for excess energies below 20 MeV

Determination of the η mass at COSY-ANKE $_{\rm Kinematics}$

• CM-energy \sqrt{s} depends only on the beam momentum p_d

$$s = |P_d + P_p|^2 = 2m_p\sqrt{m_d^2 + p_d^2 + m_d^2 + m_p^2}$$

• Final state momentum p_f of ³He and η

$$p_f = \frac{\sqrt{\left[s - \left(m_{^3\text{He}} + m_{\eta}\right)^2\right] \cdot \left[s - \left(m_{^3\text{He}} - m_{\eta}\right)^2\right]}}{2\sqrt{s}}$$

Determination of the η mass at COSY-ANKE

Method and Objective

Dependence:
$$p_f = p_f(p_d, m_\eta)$$

Near threshold:

Final state momentum is very sensitive to the η mass!

Objective of ANKE measurement:

Precision comparable to recent results:

$$\boxed{\Delta m_\eta < 50 \, \mathrm{keV/c^2}}
ightarrow \left| \left| rac{\Delta m_\eta}{m_\eta} pprox 10^{-4}
ight|
ight.$$

- Final state mom. p_f of the ³He-nuclei: $\Delta p_f = 300 \text{ keV/c}$
- Beam momentum p_d : $\Delta p_d = 300 \text{ keV/c}$

Determination of the η mass at COSY-ANKE

Method and Objective

Dependence:
$$p_f = p_f(p_d, m_\eta)$$

Near threshold:

Final state momentum is very sensitive to the η mass!

Objective of ANKE measurement:

Precision comparable to recent results:

$$\Delta m_{\eta} < 50 \, {
m keV/c}^2
ightarrow rac{\Delta m_{\eta}}{m_{\eta}} pprox 10^{-4}$$

- Final state mom. p_f of the ³He-nuclei: Δp_f = 300 keV/c
- Beam momentum p_d : $\Delta p_d = 300 \text{ keV/c}$

$$\eta$$
 mass fit: $p_f = p_f(p_d, m_\eta)$

Beam momentum determination p_d

Beam momentum determination

Spin resonance method Resonant depolarization technique

 Depolarization of a vertically polarized deuteron beam with an artificial spin resonance

 Induced by a horizontal magnetic rf-field

Resonance condition:

$$f_r = (1 + \gamma G_d) f_0$$

$$\gamma = \frac{1}{G_d} \left(\frac{f_r}{f_0} - 1 \right)$$

$$p_d = m_d \sqrt{\gamma^2 - 1}$$

- f_r resonance frequency
- f_0 revolution frequency
- G_d gyromagnetic anomaly

Beam momentum determination

Results

Phys. Rev. ST Accel. Beams 13 (2010) 022803

$$p_d = (3146.409 \pm 0.029_{\text{stat.}} \pm 0.095_{\text{sys.}}) \; \text{MeV/c}$$

$$rac{\Delta p_d}{p_d} pprox 3 imes 10^{-5}$$

- Uncertainty of 95 keV/c is caused by systematic variations of the spin resonance frequency f_r
- A systematic f_r shift of ± 15 Hz is observed and originated by the variation of the orbit length in COSY
- Method and results have been published in P. Goslawski et al., Phys. Rev. ST Accel. Beams 13 (2010) 022803

Final state momentum determination p_f

Final state momentum determination

Standard ANKE FD calibration: Reactions used:

- $dp \rightarrow dp$ elastic with
 - fast forward scattered d detected
 - both particles detected
- *dp* → *ppn* charge-exchange scattering with two p being detected
- $dp \rightarrow {}^{3}\text{He}\,\pi^{0}$ with ${}^{3}\text{He}$ nucleus being detected

Identification of $dp ightarrow {}^{3}\text{He}\,\eta$

- Background consisting of d, p from dp elastic and deuteron break-up
- Suppressed by energy loss and TOF cut on the ³He nuclei

Background description using subthreshold data

- ► Subthreshold data at $Q \approx -5$ MeV were analyzed as if they were taken above threshold: $\vec{p}^{LS} = \frac{p_{beam}}{p_{beam}} \cdot \vec{p}_{sub}^{LS}$
- Reconstructed momenta are linearly scaled with beam momentum
- Pure ³He η signal after background subtraction

Identification of the reaction $dp \rightarrow {}^{3}\text{He}\,\eta$

The momentum ellipse

Excess energy
$$Q = 6.3 \,\mathrm{MeV}$$

Verification of calibration using two-body reaction

Kinematics of two-body reaction

 Perfect symmetric momentum sphere in p_x, p_y, p_z with radius

$$p_f = \sqrt{p_x^2 + p_y^2 + p_z^2}$$

- Deviations of symmetric shape
 → improve alignment
- Study cos θ and φ dependence of the final state momentum

$$p_f = p_f(\cos \vartheta)$$
 and $p_f = p_f(\phi)$

► Therefore full geometrical acceptance is needed → ANKE

Angular dependence of p_f

 $p_f = p_f(\cos \vartheta)$ for $Q = 1.1 \,\mathrm{MeV}$

Influence of (p_x, p_y, p_z) momentum resolution on p_f

Momentum components are gaussian distributed with $(\sigma_{p_x}, \sigma_{p_y}, \sigma_{p_z}) = (10, 20, 30) \, \mathrm{MeV/c}$

 \blacktriangleright Final state momentum and missing mass depend on $\cos \vartheta$ and ϕ

Improvement of calibration and determination of momentum spreads

 $p_f = p_f(\cos \vartheta)$ and $p_f = p_f(\phi)$ for:

1.) Standard ANKE calibration

2.) Calibration improved using kinematics of two body reaction

Extracted momentum spreads $(\sigma_{p_x}, \sigma_{p_y}, \sigma_{p_z}) =$ (2.8, 7.9, 16.4) MeV/c

with uncertainties of $(\Delta \sigma_{p_x}, \Delta \sigma_{p_y}, \Delta \sigma_{p_z}) = (0.2, 0.2, 0.1) \, \mathrm{MeV/c}$

Final state momentum determination

- 12 final state momenta in the range of $p_f = 30 - 100 \, {\rm MeV/c}$ with uncertainties $\Delta p_f < 80 \, \mathrm{keV/c}$
- \rightarrow Same effect occurs for missing mass distributions

100

COSY-ANKE η mass result

Result:
$$p_f = p_f(p_d, m_\eta)$$

 $m_\eta = (547.873 \pm 0.005) \,\mathrm{MeV/c^2}$

 $\chi^2/NDF = 1.28$

 $p_d^{
m thr.} = (3141.688 \pm 0.021)\,{
m MeV/c}$

threshold momentum

Systematic uncertainties

Sources of systematic uncertainties

Source	Variation	$\Delta m_\eta~({ m keV}/c^2)$
Absolute beam momentum	95 keV/ <i>c</i>	23
Experimental settings		2
m_η assumed in simulations	20 keV/ c^2	< 2
$\Delta E imes eta^2$ cut	$6\sigma ightarrow 2\sigma$	5
Flight length cut	$3\sigma ightarrow 2\sigma$	1
p_f correction parameters	$4\sigma ightarrow 2\sigma$	12
Total systematic uncertainty		27

Systematic errors are mainly given by the determination of the absolute value of the beam momentum and the p_f correction parameters

Additional cross check of systematics:	Supercycle	$m_\eta~({ m MeV/c^2})$
5	1	547.870
\blacktriangleright η mass fit for each supercycle	2	547.877
Small deviation of 7 keV/c ²	1+2	547.873

COSY-ANKE result of the η meson mass

$$m_\eta = (547.873 \pm 0.005_{
m stat.} \pm 0.027_{
m sys.})~{
m MeV/c^2}$$

- Submitted, accepted and published soon in *Physical Review D*
- Comparable and competitive in accuracy with best measurements
- In agreement with results of invariant mass experiments
- No influence of $dp \rightarrow {}^{3}\text{He}\,\eta$ on mass
- Probably that COSY-ANKE & KLOE results will shift PDG value

Thank you for your attention

Additional Slides

Additional Slides

Determination of the η mass at COSY-ANKE

Cycle timing structure

Measurement of (p_d, p_f) data set

- 12 fixed beam momenta divided alternately into two supercycles
- ► Each SC covers an excess energy range of $Q \approx 1 11 \,\mathrm{MeV}$
- Data below η production threshold for background description
- *p_f*: Five days of data taking for each setting (ANKE, unpol. beam)
- *p_d*: Beam momentum measurement before and after data taking (EDDA, rf-solenoid, pol. beam)

Supercycle (SC) with 7 different beam energies

Beam momentum determination

Table: Accuracy and possible systematic shifts of the resonance frequency f_r .

Source	$\Delta f_r/f_r$
Resonance frequency accuracy from	
depolarization spectra	$9.0 imes10^{-6}$
Spin tune shifts from longitudinal fields	
(field errors)	$1.4 imes10^{-9}$
Spin tune shifts from radial fields	
(field errors, vertical correctors)	$6.0 imes10^{-9}$
Spin tune shifts from radial fields	
(vertical orbit in quadrupoles)	$4.1 imes10^{-8}$

Determination of the η mass at COSY-ANKE

Method and Objective

Dependence:
$$p_f = p_f(p_d, m_\eta)$$

Near threshold:

Final state momentum is very sensitive to the η mass!

Objective of ANKE measurement:

Precision comparable to recent results:

$$\Delta m_{\eta} < 50 \, {
m keV/c^2}
ightarrow rac{\Delta m_{\eta}}{m_{\eta}} pprox 10^{-4}$$

- Final state mom. p_f of the ³He-nuclei: $\Delta p_f = 300 \text{ keV/c}$
- Beam momentum p_d : $\Delta p_d = 300 \text{ keV/c}$

$$\eta$$
 mass fit: $p_f = {m{S}} \cdot {m{p}_f}({m{p}_d},{m{m}_\eta})$

 Scaling in p_f because of small inaccuracies in distance between vertex and wire chambers

Final state momentum determination

Identification of the reaction $dp \rightarrow {}^{3}\text{He}\,\eta$: Background suppression

Cut on energy loss ΔE

- 3 layers of scintillation counters
- ► Energy loss according to Bethe-Bloch: ΔE ~ z²/β²
- Energy loss of ³He nuclei higher than for p and d
- Cut on $\Delta E \times \beta^2$

Cut on flight length s (TOF)

- Time difference Δt between 1. and 3. scintillation wall
- Flight length s: s = Δt × β = Δt × p/E
- Clear peak for ³He nuclei

Background description using subthreshold data for different excess energies

Angular dependence of p_f

 $p_f = p_f(\cos \vartheta)$ for $Q = 10.4 \,\mathrm{MeV}$

Improvement of calibration/alignment - fine tuning

p_z - magnetic field of D2 Changes from 1.4172 T → 1.4159 T Δ = 0.0013 T Changes of below 0.1%
 p_x - deflection angle

 $\begin{array}{ll} \mbox{Changes from } 5.816\,^\circ \rightarrow 5.792\,^\circ & \Delta = 0.024\,^\circ \\ \mbox{Changes of below } 0.4\% \end{array}$

p_y - y-position of the wire chambers
 Changes of 0.4 mm

COSY-ANKE η mass result

0.12

$$m_\eta = (547.873 \pm 0.005)\,{
m MeV/c^2}$$

with $S = 1.008 \pm 0.001$ $\chi^2 / NDF = 1.28$

threshold momentum

$$p_d^{
m thr.} = (3141.688 \pm 0.021)\,{
m MeV/c}$$

COSY-ANKE η mass result

Result without scaling factor: $p_f = p_f(p_d, m_\eta)$

 $m_\eta = (547.809 \pm 0.003) \; {
m MeV/c}^2 \ \chi^2/{\it NDF} pprox 25$

Residual plot shows systematic deviation of pure kinematics for the reconstructed p_f

Shift of 64 ${\rm keV/c^2}$ in m_η compared to fit with scaling factor