	Theoretical framework	Discussions	
Meson res	sonance spectrosco	py, semi-local	
duality ar	nd Weinberg spectr	al sum rules	

Zhi-Hui Guo

Universidad de Murcia & Hebei Normal University

12th International Workshop on Meson Production, Properties and Interaction (Meson 2012) May 31-June 5, 2012, Kracow, Poland

in collaboration with J.A.Oller and J.Ruiz de Elvira

Phys.Rev.D84 (2011) 034005 and Phys.Lett.B712 (2012) 407

Zhi-Hui Guo

Sketch of my talk

- 1. Preface
- 2. Theoretical framework:
 - U(3) χPT at one-loop plus resonance exchanges: meson-meson scattering, form factors and spectral functions
 - \blacktriangleright N/D approach to implement the unitarization
- 3. Discussions
 - Fit quality and resonance spectroscopy
 - Semi-local duality at $N_C = 3$ and beyond
 - Weinberg-like spectral sum rules at $N_C = 3$ and beyond
- 4. Summary

Zhi-Hui Guo

	Preface	Theoretical framework	Discussions	
Preface				
Thrivi	ng studies on	the scalar spectroscopy,	such as	

- $\sigma, \kappa, f_0(980), a_0(980), ...,$ emerge recently:
 - Roy equation: [Caprini, Colangelo, Leutwyler, PRL'06] [Kaminski, Pelaez, et al., PRD '08 '11] [Descotes-Genon, Moussallam, EPJC '06]
 - PKU parametrization: [Zheng et al, NPA '04] [Zhou et al., JHEP '05]
 - Bethe-Salpeter Equation: [Nieves, Ruiz Arriola, NPA'00] [Nieves, Pich, Ruiz Arriola, PRD'11]
 - Inverse Amplitude Method: [Pelaez, Rios, PRL'06]
 - N/D approach: [Oller, Oset, PRD '99] [Albaladejo, Oller, PRL '08] [Guo, Oller, PRD '11]

Remind: the above approaches are based on the analyses of meson-meson scattering.

Zhi-Hui Guo

▶

	Preface	Theoretical framework	Discussions	
Scala	r resonances i	n decay and production	processes:	
► C	σ and κ in $J/$	Ψ decays: [BES, PLB'04 '	'06 '07 '11]	
► C	σ and κ in D	decays: [E791, PRL'02]		
► <i> </i>	in photopro	duction of $K^*\Sigma$: [Niiyama	a's talk]	
▶ 5	Scalars in η ai	nd η' decays: [Escribano's	talk]	

- Heavier members in the f₀ scalar family @ BESIII: [Yanping Huang and Yutie Liang's talks]
- σ and $f_0(980)$ in ISR production @ BaBar: [Solodov's talk]

In this talk, we focus more on the theoretical considerations:

- SS SS, SS PP, PP PP Weinberg sum rules:
 Interplay between Scalar and Pseudoscalar resonances
- Average (or Semi-local) Duality in meson-meson scattering: Interplay between Scalar and Vector resonances
- Classification according to large N_C:
 Are they the standard q
 q resonance with a constant mass and width decreasing as 1/N_C or something else?

Zhi-Hui Guo

	Theoretical framework	Discussions	

Theoretical Framework :

$U(3) \chi PT$ and its unitarization

Zhi-Hui Guo

		Theoretical framework	Discussions	
U(3)	_χ ΡΤ v.s. <i>Sl</i>	<i>J</i> (3) χΡΤ		

Dynamical degrees of freedom

SU(3) χ PT: π , K, η_8 U(3) χ PT: π , K, η_8 , η_1 (massive state, caused by QCD $U_A(1)$ anomaly)

Advantages:

- At large N_C: U(3) χPT contains all the relevant degrees of freedom of QCD at low energy, since η₁ becomes the ninth pseudo-Goldstone boson at large N_C. [Witten, NPB'79]
- In the physical case: U(3) χPT includes both the physical η and η' mesons, while the SU(3) version only explicitly includes the pure octet η₈.

Sketch Preface Theoretical framework Discussion

Leading order Lagrangian:

$${\cal L}^{(0)} = rac{F^2}{4} \langle u_\mu u^\mu
angle \, + rac{F^2}{4} \langle \chi_+
angle + rac{F^2}{3} M_0^2 \ln^2 \det u \, ,$$

[Witten, PRL'80] [Di Vecchia & Veneziano, NPB'80] [Rosenzweig, Schechter & Trahern, PRD'80]

Resonance saturation of the low energy constants is assumed:

$$\mathcal{L}_{S} = c_{d} \langle S_{8} u_{\mu} u^{\mu} \rangle + c_{m} \langle S_{8} \chi_{+} \rangle + \widetilde{c}_{d} S_{1} \langle u_{\mu} u^{\mu} \rangle + \widetilde{c}_{m} S_{1} \langle \chi_{+} \rangle$$

$$\mathcal{L}_V = rac{i \mathcal{G}_V}{2\sqrt{2}} \langle V_{\mu
u}[u^\mu, u^
u]
angle \, ,$$

$$\mathcal{L}_{P} = i d_m \langle P_8 \chi_- \rangle + i \widetilde{d}_m P_1 \langle \chi_- \rangle \,.$$

[Ecker, Gasser, Pich, de Rafael, NPB'89] Another two local operators are also considered:

$$rac{\delta L_8}{2} \langle \chi_+ \chi_+ + \chi_- \chi_-
angle, \quad -\Lambda_2 rac{F^2}{12} \langle U^+ \chi - \chi^+ U
angle \ln \det u^2$$

[Guo, Oller, PRD'11] [Guo, Oller, Ruiz de Elvira, PLB'12]

Zhi-Hui Guo

Perturbative calculations

[Guo, Oller, PRD'11] http://www.um.es/oller/u3FullAmp16.nb

Zhi-Hui Guo

	Theoretical framework	Discussions	

Scalar form factor:

Pseudoscalar form factor:

[Guo, Oller, Ruiz de Elvira, PLB'12]

Zhi-Hui Guo

	Theoretical framework	Discussions	

Unitarization: to extend the applicable energy region of perturbative results

The unitarized scattering amplitudes and form factors are constructed using a simplified N/D approach [Oller, Oset, PRD'99], [Meißner, Oller, NPA'01]

$$T^{IJ}(s) = \left[1 + N^{IJ}(s) g^{IJ}(s)\right]^{-1} N^{IJ}(s), \qquad (1)$$

$$F'(s) = \left[1 + N^{IJ}(s)g^{IJ}(s)\right]^{-1}R'(s), \qquad (2)$$

where $N^{IJ}(s)$ only contains the crossed channel cuts, $R^{I}(s)$ is real and $g^{IJ}(s)$ only includes the right hand cuts required by unitarity:

$$N^{IJ}(s) = T^{IJ}(s)^{(2)+\text{Res+Loop}} + T^{IJ}(s)^{(2)} g^{IJ}(s) T^{IJ}(s)^{(2)}, \qquad (3)$$

$$R'(s) = F'(s)^{(2) + \text{Res} + \text{Loop}} + N^{IJ}(s)^{(2)} g^{IJ}(s) F'(s)^{(2)}.$$
(4)

$$16\pi^{2}g^{IJ}(s) = a_{SL}(\mu) + \log\frac{m_{B}^{2}}{\mu^{2}} - x_{+}\log\frac{x_{+}-1}{x_{+}} - x_{-}\log\frac{x_{-}-1}{x_{-}}, \quad (5)$$

$$x_{\pm} = \frac{s + m_{A}^{2} - m_{B}^{2}}{2s} \pm \frac{1}{-2s}\sqrt{-4s(m_{A}^{2} - i0^{+}) + (s + m_{A}^{2} - m_{B}^{2})^{2}}.$$

Zhi-Hui Guo

	Theoretical framework	Discussions	

Relevant channels considered in our work

► IJ=00:
$$\pi\pi$$
, $K\bar{K}$, $\eta\eta$, $\eta\eta'$, $\eta'\eta'$
 $T^{00}(s)$, $N^{00}(s)$ and $g^{00}(s)$ are 5 × 5 matrices.
 $R^{0}(s)$ is a column vector with 5 rows.

•
$$IJ = \frac{1}{2}0 \text{ or } \frac{1}{2}1$$
: $K\pi$, $K\eta$, $K\eta'$

▶ IJ=10:
$$\pi\eta$$
, $K\bar{K}$, $\pi\eta'$

► IJ=11:
$$\pi\pi$$
, $K\bar{K}$

►
$$IJ = \frac{3}{2}0$$
: $K\pi$

	Theoretical framework	Discussions	

Spectral functions and Weinberg sum rules

The scalar spectral function or the imaginary part of the scalar two-point correlator can be calculated through

$$\mathrm{Im}\Pi_{S^{a}}(s) = \sum_{i} \rho_{i}(s) |F_{i}^{a}(s)|^{2} \theta(s - s_{i}^{\mathrm{th}}), \qquad (6)$$

$$F_i^a(s) = \frac{1}{B} \langle 0 | \bar{q} \lambda_a q | (PQ)_i \rangle, \qquad (7)$$

$$\rho_i(s) = \frac{\sqrt{[s - (m_A + m_B)^2][s - (m_A - m_B)^2]}}{16\pi s}, \qquad (8)$$

with λ_a (a = 1, 2, ..., 8) the Gell-Mann matrix and $\lambda_0 = \sqrt{2/3} I_{3\times 3}$. We consider the strangeness conserving cases: a = 0, 8, 3. Strangeness changing cases: [Jamin, Oller, Pich, NPB'02]

Zhi-Hui Guo

The pseudoscalar spectral function is calculated through	
The pseudoscalar spectral function is calculated through	
The pocudoscular opectral function is calculated through	
${ m Im} \Pi_{P^{a}}(s) \;\;=\;\; \sum \pi \delta(s-m_{P_{j}}^{2}) H_{j}^{a}(s) ^{2} ,$	(9)
$H^{a}(s) = \frac{1}{2} \langle 0 i \bar{a} \gamma_{\varepsilon} \lambda_{\varepsilon} a (P) \rangle$	(10)

$$\int_{0}^{s_{0}} \left[\operatorname{Im} \Pi_{R}(s) - \operatorname{Im} \Pi_{R'}(s) \right] ds + \int_{s_{0}}^{\infty} \left[\operatorname{Im} \Pi_{R}(s) - \operatorname{Im} \Pi_{R'}(s) \right] ds = 0,$$
(11)

with *R* and $R' = S^{a=0,8,3}$ or $P^{a=0,8,3}$.

We know, with the OPE results at $\mathcal{O}(\alpha_s)$ with demension 5 operators, that the second integral in the above equation vanishes in the chiral limit. [Jamin, Munz, ZPC'93]

Zhi-Hui Guo

		Theoretical framework	Discussions	
Semi-local d	uality: Regge t	heory and hadronic degre	ees of freedom	

In $\pi\pi$ scattering, the relations between the t- and s-channel amplitudes with definite isospin numbers can be deduced from crossing symmetry

$$T_{\rm t}^{(0)}(s,t) = rac{1}{3} T_{
m s}^{(0)}(s,t) + T_{
m s}^{(1)}(s,t) + rac{5}{3} T_{
m s}^{(2)}(s,t) \,,$$
 (12)

$$T_{\rm t}^{(1)}(s,t) = \frac{1}{3}T_{\rm s}^{(0)}(s,t) + \frac{1}{2}T_{\rm s}^{(1)}(s,t) - \frac{5}{6}T_{\rm s}^{(2)}(s,t),$$
 (13)

$$T_{\rm t}^{(2)}(s,t) = \frac{1}{3}T_{\rm s}^{(0)}(s,t) - \frac{1}{2}T_{\rm s}^{(1)}(s,t) + \frac{1}{6}T_{\rm s}^{(2)}(s,t).$$
 (14)

A useful quantity to measure the semi-local (average) duality is [Pelaez, Pennington, Ruiz de Elvira and Wilson, PRD'11]

$$F_n^{I=2, I'=1} = \frac{\int_{\nu_{\text{threhold}}}^{\nu_{\text{max}}} \nu^{-n} \operatorname{Im} \mathcal{T}_{t}^{(2)}(\nu, t)}{\int_{\nu_{\text{threhold}}}^{\nu_{\text{max}}} \nu^{-n} \operatorname{Im} \mathcal{T}_{t}^{(1)}(\nu, t)},$$
(15)

Im
$$T_{\rm s}^{(I)}(\nu,t) = \sum_{J} (2J+1) \, {\rm Im} \, T^{IJ}(s) \, P_J(z_s) \,,$$
 (16)

with $\nu = \frac{s-u}{2}$, $z_s = 1 + 2t/(s - 4m_\pi^2)$ and $P_J(z_s)$ the Legendre polynomials.

Zhi-Hui Guo

UM&HEBNU

	Theoretical framework	Discussions	

Discussions

Zhi-Hui Guo

Zhi-Hui Guo

	Theoretical framework	Discussions	

Resonance contents in our study

R	M (MeV)	Γ/2 (MeV)	$ Residues ^{1/2}$ (GeV)	Ratios	
f ₀ (600)	442^{+4}_{-4}	246 ⁺⁷ _5	$3.02^{+0.03}_{-0.04}~(\pi\pi)$	$0.50^{+0.04}_{-0.08}(Kar{K}/\pi\pi)$	$0.17^{+0.09}_{-0.09}(\eta\eta/\pi\pi)$
or σ				$0.33^{+0.06}_{-0.10}(\eta\eta'/\pi\pi)$	$0.11^{+0.05}_{-0.06}(\eta'\eta'/\pi\pi)$
f ₀ (980)	978^{+17}_{-11}	29^{+9}_{-11}	$1.8^{+0.2}_{-0.3}(\pi\pi)$	$2.6^{+0.2}_{-0.3} (K\bar{K}/\pi\pi)$	$1.6^{+0.4}_{-0.2}(\eta\eta/\pi\pi)$
				$1.0^{+0.3}_{-0.2}(\eta\eta'/\pi\pi)$	$0.7^{+0.2}_{-0.3}(\eta'\eta'/\pi\pi)$
f ₀ (1370)	1360^{+80}_{-60}	170^{+55}_{-55}	$3.2^{+0.6}_{-0.5}(\pi\pi)$	$1.0^{+0.7}_{-0.3} (K\bar{K}/\pi\pi)$	$1.2^{+0.7}_{-0.3}(\eta\eta/\pi\pi)$
				$1.5^{+0.4}_{-0.5}(\eta\eta'/\pi\pi)$	$0.7^{+0.2}_{-0.3}(\eta'\eta'/\pi\pi)$
<i>K</i> ₀ [*] (800)	643^{+75}_{-30}	303^{+25}_{-75}	$4.8^{+0.5}_{-1.0}(K\pi)$	$0.9^{+0.2}_{-0.3}(K\eta/K\pi)$	$0.7^{+0.2}_{-0.3}(K\eta'/K\pi)$
K ₀ *(1430)	1482^{+55}_{-110}	132^{+40}_{-90}	$4.4^{+0.2}_{-1.1}(K\pi)$	$0.3^{+0.3}_{-0.3}~(K\eta/K\pi)$	$1.2^{+0.2}_{-0.2}(K\eta'/K\pi)$
a ₀ (980)	1007^{+75}_{-10}	22^{+90}_{-10}	$2.4^{+3.2}_{-0.4}(\pi\eta)$	$1.9^{+0.2}_{-0.5}~(Kar{K}/\pi\eta)$	$0.03^{+0.10}_{-0.03}(\pi\eta'/\pi\eta)$
a ₀ (1450)	1459^{+70}_{-95}	174^{+110}_{-100}	$4.5^{+0.6}_{-1.7}(\pi\eta)$	$0.4^{+1.2}_{-0.2}(K\bar{K}/\pi\eta)$	$1.0^{+0.8}_{-0.3}(\pi\eta'/\pi\eta)$
$\rho(770)$	760^{+7}_{-5}	71^{+4}_{-5}	$2.4^{+0.1}_{-0.1}(\pi\pi)$	$0.64^{+0.01}_{-0.02} (K\bar{K}/\pi\pi)$	
K*(892)	892^{+5}_{-7}	25^{+2}_{-2}	$1.85^{+0.07}_{-0.07}(K\pi)$	$0.91^{+0.03}_{-0.02}(K\eta/K\pi)$	$0.41^{+0.07}_{-0.06} (K\eta'/K\pi)$
ϕ (1020)	$1019.1\substack{+0.5 \\ -0.6}$	$1.9^{+0.1}_{-0.1}$	$0.85^{+0.01}_{-0.02}(K\bar{K})$		

Zhi-Hui Guo

		Theoretical framework	Discussions				
Weinberg-like sum rules							

		W_{S^0}			W_{S^8}			W_{S^3}		W_{P^0}	W_{P^8}	W_{P^3}	\overline{W}	σ_W	σ_W / \overline{W}
Physical masses	8.6	9.0	9.6	7.4	7.5	7.7	7.0	7.2	7.4	8.9	11.3	10.1	9.0	1.5	0.16
$m_q=0, M_0\neq 0$	6.9	7.0	7.1	6.8	7.0	7.3	6.6	6.8	7.0	5.5	7.4	7.4	6.9	0.7	0.10
$m_q=0, M_0=0$	8.4	8.8	9.3	8.1	8.8	9.3	7.8	8.4	8.7	6.1	8.4	8.4	8.1	1.0	0.12

Table: Three different values of s_0 are used: 2.5, 3.0, 3.5 GeV². W_i is given in GeV². We set a_{SL} to be equal for the $m_q = 0$ cases as required by SU(3) symmetry. [Jido,Oller,Oset,Ramos,Meissner, NPA'03]

$$\begin{split} W_i &= 16\pi \int_0^{s_0} \operatorname{Im} \Pi_i(s) \, ds \,, \quad i = S^8, S^0, S^3, P^0, P^8, P^3 \,, \\ \overline{W} &= \frac{\sum_{i=(S^8, S^0, S^3, P^0, P^8, P^3)} W_i}{3 \times 6} \,, \\ \sigma_W^2 &= \sum_{i=(S^8, S^0, S^3, P^0, P^8, P^3)} \frac{(W_i - \overline{W})^2}{17} \,. \end{split}$$

Zhi-Hui Guo

		Theoretical framework	Discussions	
Different s N _C sca	trategies to extr ling at Leading or	rapolate N_C der:	_	

$$\begin{cases} c_{d,m}(N_C), G_V(N_C), d_m(N_C), g_T(N_C) \\ \end{cases} = \begin{cases} c_{d,m}(3), G_V(3), d_m(3), g_T(N_C) \\ \end{cases} \times \sqrt{\frac{N_C}{3}} , \\ \\ \begin{cases} M_R(N_C), a_{SL}(N_C), \delta_{L_8}(N_C) \\ \end{cases} = \begin{cases} M_R(3), a_{SL}(3), \delta_{L_8}(3) \\ \end{cases}, \\ \begin{cases} M_0^2(N_C), \Lambda_2(N_C) \\ \end{cases} = \begin{cases} M_0^2(3), \Lambda_2(3) \\ \end{cases} \times \frac{3}{N_C} . \end{cases}$$

Sub-leading order N_C scaling (taking G_V as an example): $G_V(3)$, $G_V(\infty)$

$$\begin{split} G_V(\infty) &= \frac{F(\infty)}{3} \;, [\text{Guo}, \text{Sanz Cillero}, \text{Zheng}, \text{JHEP}'07], \; [\text{Pich}, \text{Rosell}, \text{Sanz Cillero}, \text{JHEP}'11], \\ G_V(N_C) &= G_V(3) \sqrt{\frac{N_C}{3}} \times \left[1 + \frac{G_V(3) - G_V^{\text{Nor}}(\infty)}{G_V(3)} \left(\frac{3}{N_C} - 1 \right) \right] \;, \; \text{with} \; G_V^{\text{Nor}}(\infty) = G_V(\infty) \sqrt{\frac{3}{N_C}} \;. \end{split}$$

	G _V	M_{ρ}, M_{S_1}	D-wave
Scenario 1	LO	LO	NO
Scenario 2	LO+NLO	LO	NO
Scenario 3	LO+NLO	LO+NLO	NO
Scenario 4	LO+NLO	LO+NLO	YES

Tensor resonances (crucial to D-wave): [Ecker, Zauner, EPJC'07]

Zhi-Hui Guo

UM&HEBNU

Semi-local duality at $N_C = 3$ and beyond

Zhi-Hui Guo

UM&HEBNU

		Theoretical framework	Discussions	
Pseud	do-Goldstone masses	s and leading order η - η' mixing	angle with varving N	c

 N_C trajectories of $\rho(770)$ and $K^*(892)$

mimic SU(3): fix the π, K, η, η' masses and $\theta = 0$ when varying N_C

Zhi-Hui Guo

UM&HEBNU

	Theoretical framework	Discussions	

 N_C trajectories of $f_0(980)$, $f_0(1370)$, $K_0^*(1430)$ and $a_0(1450)$

Zhi-Hui Guo

UM&HEBNU

	Theoretical framework	Discussions	

N_C trajectories of $f_0(600)$ (or σ), $K_0^*(800)$ (or κ) and $a_0(980)$

Zhi-Hui Guo

UM&HEBNU

	Theoretical framework	Discussions	

Weinberg sum rules with varying N_C : $W_i \times \frac{3}{N_C}$

$$W_i = 16\pi \int_0^{s_0} \operatorname{Im} \Pi_i(s) \, ds, \quad i = S^8, S^0, S^3, P^0, P^8, P^3$$

Zhi-Hui Guo

	Theoretical framework	Discussions	Summary

Summary

- The one-loop calculations of all meson-meson scattering amplitudes, scalar and pseudoscalar form-factors within U(3) χPT plus tree level exchanges of resonances, which are also unitarized through the N/D approach, have been worked out.
- ▶ Resonance pole positions at $N_C \ge 3$ and their coupling strengths to the pseudo-Goldstone boson pairs are discussed: $f_0(600)$, $a_0(980)$, $K_0^*(800)$, $f_0(980)$, $f_0(1370)$, $a_0(1450)$, $K_0^*(1430)$, $\rho(770)$, $K^*(892)$ and $\phi(1020)$.
- ▶ Studies of semi-local duality and Weinberg-like sum rules for $N_C \ge 3$ pose strong constraints on the spectra and the evolution of N_C . This shows a clear support about the emerging pictures for the scalar dynamics proposed by us.

	Theoretical framework	Discussions	Summary

Dziekuje!

Zhi-Hui Guo

