First Precision Spectroscopy of Pionic Atoms at RI Beam Factory

Kenta Itahashi Advanced Meson Science Laboratory, RIKEN for Pionic Atom Factory Project

RIKEN

INABE Naohito, ITAHASHI Kenta, KAMEDA Daisuke, KUBO Toshiyuki, NAKAMURA Masaki, TAKEDA Hiroyuki, UESAKA Tomohiro, YOSHIDA Koichi **GSI**

GEISSEL Hans, WEICK Helmut

The University of Tokyo

HAYANO Ryugo S., ITOH Satoshi, KAWASE Shoichiro, MATSUBARA Hiroaki, MICHIMASA Shin'ichiro, MIKI Kenjiro, MIYA Hiroyuki, <u>NISHI Takahiro</u>, NOJI Shumpei, OTA Shinsuke, TODOROKI Koichi

University of Notre Dame

BERG Georg P.A.

SMI

SUZUKI Ken

Tohoku University

TSUKADA Kyo

Nara Women's University

HIRENZAKI Satoru, IKENO Natsumi, YAMAGATA-SEKIHARA Junko

Kyoto University

FUJIOKA Hiroyuki

For detailed theoretical discussion, see **N. Ikeno**'s poster #22.

z	112I	113I	114I	115I	116I	117I	118I	119I	120I	121I	1221	Νι	lor	ear	r Cl	har	ť
	111Te	112Te	113Te	114Te	115Te	116Te	117Te	118Te	119Te	120Te	121Te	122Te	123Te	124Te	125Te	126Te	127Te
51	110Sb	111Sb	112Sb	113Sb	114Sb	115Sb	116Sb	117Sb	118Sb	119Sb	120Sb	121Sb	122Sb	123Sb	124Sb	125Sb	126Sb
	109Sn	110Sn	111Sn	<u>1128n</u>	113Sn		1158n isio	1165n	1178n	1188n	1198n	1208n	121Sn	122Sn	123Sn	124Sn	125Sn
49	108In	109In	110In	0 ¹	f de	ed	ly b		nd i		nic	ato	ms	121In	122In	123In	124In
	107Cd	108Cd	109Cd	C	over	1125a ^ W	ide	rar	ige	of	eler	ner	1190a 1ts	120Cd	121Cd	122Cd	123Cd
47	106Ag	107Ag	108Ag	109Ag	110Ag	111Ag	112Ag	113Ag	114Ag	115Ag	116Ag	117Ag	118Ag	119Ag	120Ag	121Ag	122Ag
	105Pd	106Pd	107Pd	108Pd	109Pd	110Pd	111Pd	112Pd	113Pd	114Pd	115Pd	116Pd	117Pd	118Pd	119Pd	120Pd	121Pd
45	104Rh	105Rh	106Rh	107Rh	108Rh	109Rh	110Rh	111Rh	112Rh	113Rh	114Rh	115Rh	116Rh	117Rh	118Rh	119Rh	120Rh
	59		61		63		65		67		69		71		73		N

NNDC,BNL

z	112I	113I	114I	115I	116I	117I	118I	119I	120I	121I	1221	123I	124I	125I	1261	127I	128I
	111Te	112Te	113Te	114Te	115Te	116Te	117Te	118Te	119Te	120Te	121Te	122Te	123Te	124Te	125Te	126Te	127Te
51	110Sb	111Sb	112Sb	113Sb	114Sb	115Sb	116Sb	117Sb	118Sb	119Sb	120Sb	121SĐ	122Sb	123Sb	124Sb	125Sb	126Sb
	109Sn	110Sn	111Sn	112Sn	113Sn	114Sn	115\$n	116Sn	117Sn	118Sn	119Sn	120Sn	121Sn	122Sn	123Sn	124Sn	125Sn
49	108In	109In	110In	111In	112In	113In	114In	115In	116In	117In	118In	119In	120In	121In	122In	123In	124In
	107Cd	108Cd	109Cd	110Cd	111Cd	112Cd	113Cd	114Ca	115Cd	116Cd	117Ca	118Cd	119Cd	120Cd	121Cd	122Cd	123Cd
47	106Ag	107Ag	108Ag	109Ag	110Ag	111Ag	112Ag	113Ag	114Ag	115Ag	116Ag	117Ag	118Ag	119Ag	120Ag	121Ag	122Ag
	105Pd	106Pd	107Pd	108Pd	109Pd	110Pd	111Pd	112Pd	113Pd	114Pd	115Pd	116Pd	117Pd	118Pd	119Pd	120Pd	121Pd
45	104Rh	105Rh	106Rh	107Rh	108Rh	109Rh	110Rh	111Rh	112Rh	113Rh	114Rh	115Rh	116Rh	117Rh	118Rh	119Rh	120Rh
	59		61		63		65		67	884000 - 1990 - 18	69		71		73		N

NNDC,BNL

NNDC,BNL

z	112I	113I	114I	115I	116I	117I	118I	119I	120I	121I	1221	123I	124I	125I	126I	127I	128I
	111Te	112Te	113Te	114Te	115Te	116Te	117Te	118Te	119Te	120Te	121Te	122Te	123Te	124Te	125Te	126Te	127Te
51	110Sb	111Sb	112Sb	113Sb	114Sb	115Sb	116Sb	117Sb	118Sb	119Sb	120Sb	121Sb	122Sb	123Sb	124Sb	125Sb	126Sb
	109Sn	110Sn	111Sn	112Sn	113Sn	114Sn	115\$n	116Sn	117Sn	118Sn	119Sn	120Sn	121Sn	122Sn	123Sn	124Sn	125Sn
49	108In	109In	110In	111In	112In	113In	114In	115In	116In	117In	118In	119In	120In	121In	122In	123In	124In
	107Cd	108Cd	109Cd	110Cd	111Cd	112Cd	113Cd	114Cd	115Cd	116Cd	117Cd	118Cd	119Cđ	120Cd	121Cd	122Cd	123Cd
47	106Ag	107Ag	108Ag	109Ag	110Ag	111Ag	112Ag	113Ag	114Ag	115Ag	116Ag	117Ag	1184 g	119Ag	120Ag	121Ag	122Ag
	105Pd	106Pd	107Pd	108Pd	109Pd	110Pd	111Pd	112Pd	113Pd	114Pd	115Pd	116Pd	117 Pd	118Pd	119Pd	120Pd	121Pd
45	104Rh	105Rh	106Rh	107Rh	108Rh	109Rh	110Rh	111Rh	112Rh	113Rł	114Fa	rst	ΕX	pe	rim	en	C ₂₀ Rh
-	59		61		63		65		67		69		71		73		N

NNDC,BNL

Chiral symmetry at finite density

Daisuke Jido, Tetsuo Hatsuda, Teiji Kunihro, Phys.Lett.B670:109-113,2008. Kolomeitsev, Kaiser, Weise, Phys. Rev. Lett. 90(2003)092501

M. Gell-Mann et al., PR175(1968)2195.

Gell-Mann-Oakes-Renner relation

$$f_{\pi}^2 m_{\pi}^2 = -2m_q \left< \bar{q}q \right>$$

 f_{π} : pion decay constant

Y.Tomozawa, NuovoCimA46(1966)707. S.Weinberg, PRL17(1966)616.

Tomozawa-Weinberg relation $b_1 = -\frac{m_\pi}{8\pi f_\pi^2}$

 b_1 : isovector πN scattering length

Present b₁ precision

bl still has a large error ← exp. error in pionic atom spectroscopy

In-medium b1 is calculated based on deeply bound pionic states data combined with light spherical pionic atom data.

Experimental Method

(d,³He) nuclear reaction to directly produce pionic atom

Missing mass spectroscopy

to measure excitation spectrum by Q-value measurement

We are aiming at < 400 keV (FWHM) resolution at ~140 MeV excitation energy.

Momentum Transfer

Dispersion matching

H. Fujita et al., NIMA484(2002)17

NISHINA C E N T E R

Target

Material	Thickness	Width	Purpose					
122 Sn	10 mg/cm^2	1.0 mm	Production					
122 Sn	10 mg/cm^2	full	Production					
$(\mathrm{CH}_2)_{\mathrm{n}}$	$100~\mu{ m m}$	2.0 mm	Calibration					
$(\mathrm{CH}_2)_{\mathrm{n}}$	$100~\mu{\rm m}$	full	Calibration					
	p(d,³He)π⁰							

Target	Run	Duration	³ He entry
$^{-122}$ Sn strip	12	926 min.	565626
122 Sn full	3	169 min.	213084
$(CH_2)_n$ strip	3	51 min.	244216
$(CH_2)_n$ full	1	17 min.	122535

Experimental setup

Experimental setup

Focal plane detectors

Particle identification

Typical Event in MWDC

Typical Event in MWDC

Particle ID by MWDC itself

> After combination with scintillator information \rightarrow

³He Track is reconstructed

Energy calibration

Position → Energy conversion

Kinematics: two body reaction $p(d,^{3}He)\pi^{0}$ Quadratic correlation between angle and momentum

Energy calibration

Kinematically determined calibration of ³He Energy

Pionic Atom Spectra in (d,³He) reactions

Theory and Experiment

Preceding exp. at GSI for pionic lead atoms in ²⁰⁸Pb(d,³He) reaction

Strinkingly good agreement between theory and exp. K.I et al., PRC62,025202

Theoretical Spectrum for ¹²²Sn(d,³He)

Focal Plane ³He Spectrum

(acceptance uncorrected)

Focal Plane ³He Spectrum

(acceptance uncorrected)

I5 hours data accumulation with 10¹²/s beam

Focal Plane ³He Spectrum (acceptance uncorrected) 750 sub-components ٦J start to grow 700 650 600 count cf. theory 550 Lп ᆔ (1s)x @(1s1/2)er1 (2032)er1 (2052)e-1 40 500 (2s)π @(1s1/2)n-1 (2052)n1 (3s)π @(1s1/2)n-1 30 (4s)π @(1s1/2)m¹ 450 20 400 Π÷ 10 350 0 – -144 -142 -136 -138 -134 -140 -40 -30 -20 -10 10 -50 0 -60 Q [MeV] $\theta_{reaction} < 10 mrad$ x (mm)

We are observing for the first time the angular dependence (= momentum transfer dependence) of pionic atom production cross section in (d,³He) reaction

Theoretical Calculation at Finite Angles

Energy spectrum

³He kinetic energy [MeV]

Decomposition Procedure

Components: $\pi \ge n^{-1}$ combinations

Fitting parameters: Binding energies, Widths, Strengths.

Spectrum decomposition

Fit parameters

	No.	Name	Description	State
Background	1	c_0	constant	free
	2	c_1	slope	free
1s	3	S_{1s}	scaling factor	free
	4	B_{1s}	binding energy	free
	5	Γ_{1s}	width	free
2p	6	S_{2p}	scaling factor	free
	7	B_{2p}	binding energy	free
	8	Γ_{2p}	width	fixed
2s	9	S_{2s}	scaling factor	free
	10	B_{2s}	binding energy	free
	11	Γ_{2s}	width	fixed
3s	12	S_{3s}	scaling factor	free
	13	B_{3s}	binding energy	fixed
	14	Γ_{3s}	width	fixed

Binding energy [MeV]

Q-value [MeV] RIKEN Nishina Center, Kenta Itahashi

Summary

Achievements

✓We have successfully measured ¹²¹Sn x pi for the first time with surprisingly rapid accumulation of statistics.

✓ Angular dependence of the production cross section is measured for the first time.

 \checkmark We are close to start systematic study.

Perspectives

- -We're analyzing energy spectra to extract binding energies and widths.
- -We still have room for resolution improvements.
- -Main experiment will come soon (Jan/2013?).
- -Feasibility study is ongoing for "inverse kinematics".

