π^- -induced production of $K^0\Lambda$ pairs on nuclei at 1.15 GeV/c momentum

Adam Kasparek for the FOPI collaboration

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

1 VI 2012

・ロト ・回ト ・ヨト ・ヨト

Plan of the talk

FOPI spectrometer and experiment

Earlier results

Production of ΛK^0 pairs

Identification of \mathcal{K}^0 and Λ pairs Missing mass analysis Simulation of multi-step reaction Comparison of different targets

Summary

個 と く ヨ と く ヨ と …

3

FOPI spectrometer @ GSI, Darmstadt

- Presented in detail yesterday by K.Wisniewski
- Beams from SIS18 accelerator;
- Fixed-target experiments;
- Almost full 4π coverage;
- Partial charge and mass identification up to A ≈ 20;
- High granulation allowing tracking of many particles;
- Magnetic field B = 0.6T
- ► 1.15 ^{GeV}/_c π⁻ beam produced by collision ¹⁴N beam on B₄C target.

FOPI spectrometer

- Intensity: about 3000 π^-/s .
- Targets: C, Al, Cu, Sn, Pb.

<ロ> (四) (四) (注) (三) (三)

The K^0 inclusive production cross section scales as a $A^{2/3}$ of the target nucleus mass number A. Bibliography:

- M. L. Benabderrahmane et al. FOPI Collaboration, Phys. Rev. Lett. 102, 182501 (2009)
- T.Matulewicz,
 K.Wisniewski, Acta Phys.
 Pol. B 39, 363 (2008)

· < @ > < 문 > < 문 > · · 문

► Momentum distribution of K⁰ can be described with -20 ± 5 MeV repulsive potential is used in HSD model calculations

FOPI spectrometer and experiment	Identification of K^0 and Λ pairs
Earlier results	Missing mass analysis
Production of ΛK^0 pairs	Simulation of multi-step reaction
Summary	Comparison of different targets

$K_{\rm S}^0(498)$ decay modes

Mode	Fraction Γ_i/Γ
$\pi^0\pi^0$	$30.69 \pm 0.05\%$
$\pi^-\pi^+$	$69.20\pm0.05\%$
$\pi^{-}\pi^{+}\gamma$	$(1.79\pm0.05) imes10^{-3}$

$\Lambda(1116)$ decay modes

Mode	Fraction Γ_i/Γ
$p\pi^{-}$	$(63.9 \pm 0.5)\%$
$n\pi^0$	$(35.8 \pm 0.5)\%$
$n\gamma$	$(1.75\pm0.15) imes10^{-3}$

- 170

★ E ▶ ★ E ▶

3

FOPI spectrometer and experiment	Identification of K^0 and Λ pairs
Earlier results	Missing mass analysis
Production of ΛK^0 pairs	Simulation of multi-step reaction
Summary	Comparison of different targets

 $m_{\pi^- p}$

 $K_{\rm S}^0(498)$ decay modes

Mode	Fraction Γ_i/Γ
$\pi^0\pi^0$	$30.69 \pm 0.05\%$
$\pi^-\pi^+$	$69.20\pm0.05\%$
$\pi^{-}\pi^{+}\gamma$	$(1.79\pm0.05) imes10^{-3}$

 $\Lambda(1116)$ decay modes

Mode	Fraction Γ_i/Γ
$p\pi^{-}$	$(63.9 \pm 0.5)\%$
$n\pi^0$	$(35.8 \pm 0.5)\%$
$n\gamma$	$(1.75\pm0.15) imes10^{-3}$

- 170

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 → � � �

FOPI spectrometer and experiment	Identification of K^0 and Λ pairs
Earlier results	Missing mass analysis
Production of ΛK^0 pairs	Simulation of multi-step reaction
Summary	Comparison of different targets

Identification of K^0 and Λ pairs Missing mass analysis Simulation of multi-step reaction Comparison of different targets

Identification of K^0 and Λ pairs

Distribution of $m_{\pi^-\pi^+}$ with borders for K^0 candidates

$$m_{\pi^-\pi^+} - m_{K^0}| <$$
 50 $rac{MeV}{c^2}$

Identification of K^0 and Λ pairs Missing mass analysis Simulation of multi-step reaction Comparison of different targets

Number of detected pairs ΛK^0

Target	Number of pairs	S/B
С	3430 ± 300	0.22
Al	90 ± 30	0.13
Cu	650 ± 90	0.36
Sn	1160 ± 120	0.31
Pb	4890 ± 300	0.47

Number of detected pairs per target

イロン イヨン イヨン イヨン

3

Identification of K^0 and Λ pairs Missing mass analysis Simulation of multi-step reaction Comparison of different targets

Number of detected pairs ΛK^0

Target	Number of pairs	S/B
С	3430 ± 300	0.22
Al	90 ± 30	0.13
Cu	650 ± 90	0.36
Sn	1160 ± 120	0.31
Pb	4890 ± 300	0.47

Number of detected pairs per target

イロン イヨン イヨン イヨン

э

Identification of K^0 and Λ pairs Missing mass analysis Simulation of multi-step reaction Comparison of different targets

Missing mass analysis

- For a single step production mechanism of ΛK⁰ pair in the reaction π⁻X the missing mass (MM) can give information on the mass and momentum of X
- Missing mass is calculated from the energy and momentum conservation rules
- $MM^2 = (E_{\Lambda} + E_{K^0} E_{\pi^-})^2 (\vec{p}_{\Lambda} + \vec{p}_{K^0} \vec{p}_{\pi^-})^2$
- MM is defined as $MM = sgn(MM^2) \cdot \sqrt{|MM^2|}$
- Broad structure below 1 GeV/c² can be attributed to the effective mass of proton in the medium
- Large structure at MM < 0 is not single-step processes: indicates multi-step interactions for production of pairs AK⁰

FOPI spectrometer and experiment	Identification of K^0 and Λ pairs
Earlier results	Missing mass analysis
Production of ΛK^{U} pairs	Simulation of multi-step reaction
Summary	Comparison of different targets

MM distribution for Pb target

 p_z of missing fragment for Pb target and condition MM> $0.75 GeV/c^2$

 p_z and p_{\perp} are comparable with the Fermi motion of nucleon a second

Identification of K^0 and Λ pairs Missing mass analysis Simulation of multi-step reaction Comparison of different targets

Simulation of multi-step reaction

- Simple simulation of multi-step reactions with kinematical constraints and the nucleon Fermi motion was performed: πN → R, RN → ΛK⁰N (R-resonance)
- No further interactions ΛK^0
- Appearance of MM< 0 events is demonstrated
- Exact shape of MM distribution is different from experimental one

FOPI spectrometer and experiment Earlier results Production of ΛΚ⁰ pairs Summary Identification of K^0 and Λ pairs Missing mass analysis Simulation of multi-step reaction Comparison of different targets

Comparison of different targets

Definition:

- MM⁻ =number of events with MM< 0 (multi-step)
- MM⁺ =number of events with MM> 0 (single and multi-step)

Increase of MM⁻/MM⁺ with target mass can be interpreted as rising role of multi-step reactions for more massive targets

(日) (同) (E) (E) (E)

Conclusions

- K⁰Λ pairs produced in π induced reactions on nuclei were identified by FOPI spectrometer at experiment at GSI Darmstadt
- Missing mass analysis shows two structures:
 - around and below proton mass
 - negative MM²
- Simulation of multi-step explains the MM < 0
- Increase of MM⁻/MM⁺ ratio evidences rising role of multi-step reactions for more massive targets

Back-up

Adam Kasparek for the FOPI collaboration π^- -induced production of $\kappa^0 \Lambda$ pairs on nuclei at 1.15 GeV/c

イロン 不同と 不同と 不同と

æ

Invariant mass distribution of Λ for C target

Figure: Invariant mass distribution of Λ for C target

Invariant mass distribution of Λ for Cu target

Figure: Invariant mass distribution of Λ for Cu target

Invariant mass distribution of Λ for Sn target

Figure: Invariant mass distribution of Λ for Sn target

Invariant mass distribution of Λ for Pb target

Figure: Invariant mass distribution of Λ for Pb target

Adam Kasparek for the FOPI collaboration π^- -induced production of $K^0\Lambda$ pairs on nuclei at 1.15 GeV/c

▶ < 문 ▶ < 문 ▶</p>

æ

Comparison of different cuts

Cut A $|m_{\pi^{-}\pi^{+}}m_{K^{0}}| < 50\frac{MeV}{c^{2}}$ Cut B $|m_{\pi^{-}\pi^{+}}m_{K^{0}}| < 25\frac{MeV}{c^{2}}$ $\frac{N_{\Lambda K^{0}}(Cut \ B)}{N_{\Lambda K^{0}}(Cut \ A)} = 0.79 \pm 0.06$ $\frac{N_{K^{0}}(Cut \ B)}{N_{K^{0}}(Cut \ A)} = 0.75 \pm 0.04$

Scheme of comparison cuts

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

p_z of missing fragment

< ≣⇒

Mass scaling of K^0 cross section

The K^0 inclusive production cross section as a function of the $\frac{1}{2}$

Adam Kasparek for the FOPI collaboration π^- -induced production of $K^0\Lambda$ pairs on nuclei at 1.15 GeV/c

p_z of missing fragment for events with MM> 0.75 GeV/ c^2

- Cut on events MM> 0.75 GeV/c² (presumably proton)
- Mean p_z of "'proton"'= 0.01 ± 0.31 GeV/c
- Fermi motion $p_F \approx 0.27 \, GeV/c$

Figure: p_z of missing fragment for C targets and condition

- For low momentum (p < 170 ^{MeV}/_c) production on Pb is supressed compared to production on C.
- It can be explained by repulsive potential KN.
- $U = 20 \pm 5 MeV$ is fitted.

Figure: The ratio of K^0 (K^+) yields produced by pions (protons) on heavy and light targets plotted as a function of the momentum p in the lab system.

ㅁㅏ 《圖ㅏ 《글ㅏ 《글ㅏ _ 글

- Angular distribution of produced K⁰ is not isotropic and show strong forward-backward assymetry.
- Ratio N_C(K⁰)/N_{Pb}(K⁰) was analysed for different angles.
- Analysis shows strong mass dependence for small angles.
- It evidences reabsroption of K⁰ by nuclear matter.
- Results of analysis was compared to IGMD transport model.

Figure: The ratio of the experimental (full triangles) angular distribution of K^0 mesons on C target to that on Pb target, compared to the IQMD model calculations.