

Towards a Measurement of the $\omega - \pi$ Transition Form Factor

Farha Anjum Khan

for the WASA-at-COSY Collaboration

06/01/12

MESON 2012 – May/June 2012

Electromagnetic transition form factor of the ω meson via the Dalitz decay $\omega \to \pi^0 e^+ e^-$

Form Factor F(q²):

$$F(q^{2}) = \frac{1}{(1-q^{2}/m_{V}^{2})}$$

Vector meson ρ : $m_v = m_\rho = 0.77 \text{GeV}$ => Resonance at $m_{v*} = q = m_0$

comparing with point-like QED prediction.
ω does not agree with VMD predictions.
π⁰ → y e⁺e⁻ and η → yl⁺l⁻ agrees.
Interpretation of g-2 experiments.

different experimental method
elementary reaction
smaller virtual photon masses
full reconstruction of the decaying meson.

06/01/12

Carla Terschlüsen: Meson2012, Monday, June 4th, A4

Wide Angle Shower Apparatus (WASA)

Experiment: $p + d \rightarrow {}^{3}He + \omega$ T = 1.45,1.5 GeV; time~12 days; σ =83nb

- find event candidates for $\omega \rightarrow \gamma^* \pi^0 \rightarrow e^+ e^- \pi^0$
- start with the real photon case $\omega \rightarrow \gamma \pi^0$ 06/01/12

BR: $(7.7\pm0.6)\times10^{-4}$ BR: $(8.28\pm0.28)\%_{(PDG)}$

ω meson tagging using missing mass of ³He

Missing Mass ³He (GeV/c²)

Full reconstruction of $\pi^0 \gamma$ final state: p + d \rightarrow ³He + $\omega[\pi^0 \gamma]$ **J**ÜLICH

<u>Central Detector</u>: photon reconstruction for $\omega[\pi^0[\gamma\gamma]\gamma]$

06/01/12

Invariant Mass gammagamma Gev/c²

Missing mass ³He vs Invariant mass of $\pi^0\gamma$

Missing Mass after ${}^{^{3}}\text{He}$ and $\pi^{^{0}}\gamma$ selection

Full reconstruction of $e^+e^-\pi^0$ final state p + d $\rightarrow {}^{3}He + \omega[e^+e^-\pi^0]$

• e⁺e⁻ selection: Particle Identification for charged tracks in tracking device(MDC) "signed momentum"

•Energy deposited in Calorimeter vs signed momentum in tracking device

ÜLICH

This PS: Thin Plastic Scintillator 06/01/12

Invariant Mass e⁺e π^0 (GeV/c²) 50 0.7 40 0.6 30 0.5 0.4 20 0.3 0.2 10 **0.1**⊟ 0^t 0.75 0.8 0.85 0.9 Missing Mass ³He (GeV/c²) 0.65 0.7 0.6

Missing Mass of ³He vs invariant mass of $e^+e^-\pi^0$

Missing Mass of ³He after $e^+e^-\pi^0$ selection

- Need to further suppress the background contributions from other $\boldsymbol{\omega}$ decays

Outlook:

•Fine tuning Calibration.

•Match MC with data

•Further suppress background in ω peak

•cross check branching ratio for $\pi^0\gamma$ -data quality and analysis procedure

• $\omega \rightarrow e^+e^-\pi^0$ Branching Ratio (Form Factor has influence on branching ratio)

Complementary analysis: pilot beam time p+p

•Compare two analyses

- 2 experimental approaches
- 2 different analysis
- => strategy for planned high-statistics run and analysis

Backup

Electromagnetic transition form factors of light vector mesons

Carla Terschlüsen Institut für Theoretische Physik, Universität Giessen, Germany

Stefan Leupold

Institutionen för fysik och astronomi, Uppsala Universitet, Sweden

Phys.Lett. B691 (2010) 191-201

M. F. M. Lutz and S. Leupold, Nucl. Phys. A813, 96 (2008), S. Leupold and M. F. M. Lutz, Eur. Phys. J. A39, 205 (2009),

chiral Lagrangian including light vector mesons and Goldstone bosons (in leading order)

> P1 and P2 are 'P2 parameter sets. stand, VMD NA60 indicate influence of next-toleading terms - error estimate roughly: 10 without (P1) and with (P2) non-|F_{ωπ}0|' VMD (contact) term \rightarrow good agreement 1 ... but at higher masses

needed for next-to-leading-order calculations:

'further experimental results for all available channels ... extremely helpful'

